A linear code $C \subseteq F^n$ is **cyclic** if

$$(a_n, a_1, ..., a_{n-1}) \in C \text{ for all } a = (a_1, ..., a_{n-1}, a_n) \in C.$$

In order to study cyclic codes, we need to introduce a few auxiliary algebraic concepts.

We have a unique F-linear isomorphism

$$\pi : F[x]_n \cong F[X]/(X^n - 1)$$

such that $x \mapsto [X]$. If $f \in F[X]$, its image $\bar{f} \in F[x]_n$ is determined by the substitution $X^j \mapsto x[j]_n = x^j \mod n$. We say that \bar{f} is the **cyclic reduction of order n of f**.
We can use the isomorphism π to transport the ring structure of $F[X]/(X^n - 1)$ to a ring structure of the ring $F[x]_n$. This structure is determined by the ordinary sum and product of $F[x]$, except that the product is to be reduced modulo the relation $x^n = 1$.

On the other hand we have an F-linear isomorphism

$$F^n \cong F[x]_n = \{ \lambda_1 + \lambda_2 x + \cdots + \lambda_n x^{n-1} | \lambda_i \in F \}$$

$$a = (a_1, \ldots, a_n) \mapsto a(x) = a_1 + a_2 x + \cdots + a_n x^{n-1},$$

which allows us to transfer the ring structure of $F[x]_n$ to a ring structure of F^n. The sum in this ring is the ordinary sum of vectors, and the product $p = ab$ of the vectors $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ is obtained by accumulating the product $a_i b_j$ in the component $(i + j \mod n) - 1$ of p, $1 \leq i, j \leq n$.

Notation. If $f \in F[X]$ and $a \in F[x]$, fa means $\bar{f}a$.
Lemma. $s(a) = xa$, for all $a \in F[x]_n$, where
\[
\sigma(a_1 + a_2x + \cdots + a_nx^{n-1}) = a_n + a_1x + \cdots + a_{n-1}x^{n-1}.
\]

Proof. The product xa is $a_1x + a_2x^2 + \cdots + a_nx^n$. Since $x^n = 1$, we have
\[
xa = a_n + a_1x + \cdots + a_{n-1}x^{n-1} = \sigma(a).
\]

Proposition. A linear code C of length n is cyclic if and only if it is an ideal of $F[x]_n$.

Proof. The lemma indicates that C is cyclic if and only if $xC \subseteq C$. Now it is enough to observe that this condition implies that $x^jC \subseteq C$ for any positive integer j, and therefore that $aC \subseteq C$ for all $a \in F[x]_n$.
Construction of cyclic codes

Given \(f \in F[X] \), we set \(C_f = (\bar{f}) \subseteq F[x]_n \). Note that \(C_f = \pi((f)) \).

Lemma. If \(g \) and \(g' \) are monic divisors of \(X^n - 1 \), then

1. \(C_g \subseteq C_{g'} \) if and only if \(g'|g \).
2. \(C_g = C_{g'} \) if and only if \(g = g' \).

Proof. The inclusion \(C_g \subseteq C_{g'} \) implies that \(\bar{g} = a \bar{g}' \), for some \(a \in F[x]_n \).
If \(a = \bar{f}, f \in F[X] \), the relation \(g = fg' \) holds mod \(X^n - 1 \). Since \(g' \) is a divisor of \(X^n - 1 \), say \(X^n - 1 = hg' \), we get \(g = fg' + hg' = (f + h)g' \), and so \(g'|g \). That \(g'|g \) implies \(C_g \subseteq C_{g'} \) is clear, and 2 is a direct consequence of 1 and the fact that \(g \) and \(g' \) are monic.

Proposition. Given a cyclic code \(C \) of length \(n \), there exists a unique monic divisor \(g \) of \(X^n - 1 \) such that \(C = C_g \).
Proof. Let \(g \in F[X] \) be a non-zero polynomial of minimal degree among those that satisfy \(g \in C \) (note that \(\pi(X^n - 1) = x^n - 1 = 0 \in C \), so that \(g \) exists and \(\deg(g) \leq n \)). We can assume that \(g \) is monic. Since \(C_g = (\bar{g}) \subseteq C \), we will end the proof of existence by establishing that

- \(g \) is a divisor of \(X^n - 1 \)
- \(C \subseteq C_g \).

Indeed, if \(q \) and \(r \) are the quotient and remainder of the division of \(X^n - 1 \) by \(g \), so that

\[
X^n - 1 = qg + r, \quad \deg(r) < \deg(g),
\]

then \(0 = x^n - 1 = \bar{q}\bar{g} + \bar{r} \), and therefore \(\bar{r} = -\bar{q}\bar{g} \in C_g \subseteq C \). Consequently \(r = 0 \), by definition of \(g \), and hence \(g \mid X^n - 1 \).

Let now \(a \in C \). To see that \(a \in C_g \), let

\[
a_X = a_1 + a_2X + \cdots + a_nX^{n-1},
\]
so that \(a = a_1 + a_2x + \cdots + a_nx^{n-1} = \bar{a}_X \). Let \(q_a \) and \(r_a \) be the quotient and remainder of the Euclidean division of \(a_X \) by \(g \):

\[
a_X = q_ag + r_a, \quad \text{deg}(r_a) < \text{deg}(g).
\]

Thus \(\bar{r}_a = a - \bar{q}_a\bar{g} \in \mathcal{C}, r_a = 0 \) and \(a = \bar{q}_a\bar{g} \in C_g \).

The uniqueness of \(g \) is an immediate consequence of the previous lemma. \(\square \)

The monic divisor \(g \) of \(X^n - 1 \) such that \(\mathcal{C} = C_g \) is called the generating polynomial of \(\mathcal{C} \). The polynomial \(\hat{g} = (X^n - 1)/g \) is called the control polynomial of \(\mathcal{C} \) (we will see a reason for this term in a short while).

Remark. Given \(f \in F[X] \), the generating polynomial of \(C_f \) is \(g = \gcd(X^n - 1, f) \). Observe that

\[
C_f = (\bar{f}) = \pi((f)) = \pi((f) + (X^n - 1)) = \pi(\gcd(f, X^n - 1)).
\]
Dimension of C_g

Proposition. $\dim(C_g) = \deg(\hat{g}) = n - \deg(g)$.

Proof. It is enough to consider the F-linear map $F[X] \to F[x]^n, f \mapsto f\bar{g}$, and notice that its image is $(\bar{g}) = C_g$ and its kernel (\hat{g}). □

Notations. Instead of the set of indices $\{1, \ldots, n\}$, we will use the set $\{0,1,\ldots,n-1\}$. In this way $a = (a_0, a_1, \ldots, a_{n-1})$ is identified with the polynomial

$$a(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}.$$

Given $a \in F[x]^n$, we set $\ell(a) = a_{n-1}$ (the leading coefficient of a) and

$$\tilde{a} = a_{n-1} + a_{n-2}x + \cdots + a_0x^{n-1}.$$

Then we have that

$$\ell(\tilde{a}b) = a_0b_0 + \cdots + a_{n-1}b_{n-1}$$

(the scalar product of $a, b \in F[x]^n$).
If \(p \) is the characteristic of \(F \), suppose that \(p \nmid n \). In particular we have \(n \neq 0 \) in \(F \).

Since \(D(X^n - 1) = nX^{n-1} \sim X^{n-1} \) has no non-constant common divisors with \(X^n - 1 \), the irreducible factors \(f_1, \ldots, f_r \) of \(X^n - 1 \) are simple (i.e., have multiplicity 1):

\[
X^n - 1 = f_1 \cdots f_r .
\]

Thus the monic divisors of \(X^n - 1 \) have the form

\[
g = f_{i_1} \cdots f_{i_s}, \ 1 \leq i_1 < \cdots < i_s \leq r.
\]

From this it follows that there are exactly \(2^r \) cyclic codes of length \(n \). Remark, however, that there may be non-trivial equivalences among these codes (we will see examples later on).
Generating matrices

The polynomials \(u_i = x^i \bar{g} \) \((0 \leq i < k)\) form a basis of \(C_g \). If

\[
g = g_0 + g_1 x + \cdots + g_{n-k} x^{n-k},
\]

then the \(k \times n \) matrix

\[
G = \begin{pmatrix}
g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\
0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 \\
0 & \cdots & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k}
\end{pmatrix}
\]

is a generating matrix of \(C = C_g \). Note that \(g_{n-k} = 1 \) (\(g \) is monic).

Remark. The coding \(F^k \rightarrow C_g, u \mapsto uG \), can be described, in terms of polynomials, as the map \(F[x]_k \rightarrow C_g, u \mapsto u\bar{g} \).
Normalized generating matrix

For $0 \leq j < k$, let

$$x^{n-k+j} = q_j g + r_j, \quad \text{deg}(r_j) < \text{deg}(g).$$

Then the k polynomials $v_j = x^{n-k+j} - r_j$ form a basis of C_g and the corresponding matrix of coefficients, G', is normalized, in the sense that the submatrix formed by the last k columns of G' is the identity matrix I_k:

$$G' = -R|I_k, \quad R = \begin{pmatrix} r_{ji} \end{pmatrix}$$

Therefore, $H' = I_{n-k}|R^T$ is a normalized control matrix.

Remark. Let $u \in F^k \cong F[x]_k$. Then the coding of u using the matrix G' is obtained by substituting the monomials x^j of u by v_j ($0 \leq j < k$):

$$u_0 + u_1 x + \cdots + u_{k-1} x^{k-1} \mapsto u_0 v_0 + u_1 v_1 + \cdots + u_{k-1} v_{k-1}.$$
Moreover, if H' is the control matrix of C_g associated to G', then the syndrome $s \in F^{n-k} \cong F[x]_{n-k}$ of $a \in F^n \cong F[x]_n$ coincides with the remainder of the division of a by g.

Notice that $s = aH'^T = a \begin{pmatrix} I_{n-k} \\ R \end{pmatrix}$.

The dual code

Proposition. $C_g^\perp = \tilde{C}_\hat{g}$, where $\tilde{C}_\hat{g}$ is the image of $C_\hat{g}$ by the map $a \mapsto \tilde{a}$.

Proof. Since C_g^\perp and $\tilde{C}_\hat{g}$ have dimension $n - k$, it is enough to see that $\tilde{C}_\hat{g} \subseteq C_g^\perp$. But this is clear: if $a \in C_\hat{g}$ and $b \in C_g$, then $ab = 0$ and consequently $\langle \tilde{a} | b \rangle = \ell(\tilde{a}b) = \ell(ab) = 0$. \hfill \qed
Since $\hat{g}x^{n-k-1}, \ldots, \hat{g}x, \hat{g}$ form a basis of $C_{\hat{g}}$, if we let
\[
\hat{g} = h_0 + h_1X + \cdots + h_kX^k,
\]
then
\[
H = \begin{pmatrix}
 h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 \\
 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\
 \vdots & \ddots \\
 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 & 0 \\
 0 & \cdots & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 \\
\end{pmatrix}
\]

is a control matrix of C_g.
Example (The ternary Golay code). The polynomial
\[g = X^5 - X^3 + X^2 - X - 1 \]
is an irreducible factor of \(X^{11} - 1 \) over \(\mathbb{Z}_3 \). In fact, the irreducible factors of \(X^{11} - 1 \) over \(\mathbb{Z}_3 \) are \(X - 1, g, \) and \(X^5 + X^4 - X^3 + X^2 - 1 \) (notice that the 3-ciclotòmiques classes mod 11 are \(\{0\}, \{1,3,9,5,4\} \) and \(\{2,6,7,10,8\} \), and this shows that \(X^{11} - 1 \) two irreducible factors of degree 5).

Let \(q = 3, n = 11 \) and \(C = C_g \). Then the type of \(C \) is \([11,6]\). Let us see that the minimum distance of \(C \) is 5.

Let \(G \) be the normalized generating matrix of \(C \). The matrix \(\bar{G} \) (parity completion of \(G \)) satisfies that \(\bar{G}\bar{G}^T = 0 \) (in order to preserve the submatrix \(I_6 \) to the right, we place the parity symbols of the rows of \(G \) to the left, so that they form the first column of \(\bar{G} \)). It follows that the code \(\bar{C} = \langle \bar{G} \rangle \) is selfdual and therefore that the weight of any element of \(\bar{C} \) is a
multiple of 3. Since the rows of \tilde{G} have weight 6, the minimum distance of \tilde{C} is 3 or 6. But every row of \tilde{G} has exactly one 0 in the first 6 columns, and the position of this 0 is different for different rows. This implies that a linear combination of two rows of \tilde{G} has weight $\geq 2 + 2$ and hence ≥ 6. Since the weight of this combination is clearly $\leq 12 - 4 = 8$, it must have weight 6. In particular, it contains exactly 2 zeros in its first six positions. This proves that a linear combination of 3 rows of \tilde{G} has at least $1 + 3$ non-zero components, and therefore it has at least weight 6. Since the combinations of 4 or more rows of \tilde{G} have weight ≥ 4, this completes the proof.

\[
\tilde{G} = \begin{pmatrix}
1 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
2 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
Computation of normalized generating matrix
of the complete ternary Golay code \([11,6,5]_3\)

```plaintext
F=Zn(3); u=1:F;
g=x^5-x^3+x^2-x-u;

R=[vec(-rem(x^j,g),5) with j in 5..10];

G=[-sum(r) with r in R]|R|identity_matrix(6)

[[2,2,2,1,2,0,1,0,0,0,0,0],
 [2,0,2,2,1,2,0,1,0,0,0,0],
 [0,2,2,0,1,1,0,0,1,0,0,0],
 [2,1,0,1,1,1,0,0,0,1,0,0],
 [1,1,2,2,2,1,0,0,0,1,0,0],
 [0,1,2,1,0,2,0,0,0,0,0,1]]
:: Matrix(Z3)
```
Factorization of $X^{11}-1$ over $\mathbb{Z}/(3)$
$e_{11}(3)=5$; x^5-x+1 is irreducible of degree 5

F=extension(Zn(3),x^5-x+1);
order(x)=242: x is primitive

a=x^(242/11); # element d'ordre 11

f1=(X-a)*(X-a^3)*(X-a^9)*(X-a^5)*(X-a^4) # $X^5+X^4+2*X^3+X^2+2 :: \mathbb{Z}_3[x][X]

f2=(X-a^2)*(X-a^6)*(X-a^7)*(X-a^10)*(X-a^8) # $X^5+2*X^3+X^2+2*X+2 :: \mathbb{Z}_3[x][X]

factor(X^11-1,Zn(3))
(X+2)*(X^5+2*X^3+X^2+2*X+2)*(X^5+X^4+2*X^3+X^2+2) :: Divisor
Roots of a cyclic code

Let F be a finite field and $q = |F|$. Let C be a cyclic F-code of length n and g its generating polynomial. The roots of C are, by definition, the roots of g in a splitting field F' of $X^n - 1$ over F (recall that $|F'| = q^m$, where $m = e_n(q)$).

If $\omega \in F'$ is a primitive n-th root of unity and we write E_g to denote the set of those $k \in \mathbb{Z}_n$ such that ω^k is a root of g, then E_g is the union of the q-cyclotomic classes corresponding to the monic irreducible divisors of g.

If $E'_g \subseteq E_g$ is a subset formed by an element of each q-cyclotomic class contained in E_g, we say that

$$M = \{\omega^k | k \in E'_g\}$$

is a minimal set of roots of $C = C_g$.
Proposition. If M is a minimal set of roots of a cyclic code C, then

$$C = \{a \in F[x]_n \mid a(\xi) = 0 \text{ for all } \xi \in M\}.$$

Determination of a cyclic code by specifying its roots. Let now $\xi_1, \ldots, \xi_r \in F'$ be n-th roots of unity

$$C_{\xi_1, \ldots, \xi_r} = \{a \in F[x]_n \mid a(\xi_j) = 0 \text{ for all } j = 1, \ldots, r\}.$$

Then C_{ξ_1, \ldots, ξ_r} is an ideal of $F[x]_n$ and we say that it is the cyclic code determined by ξ_1, \ldots, ξ_r.

Proposition. The generating polynomial of C_{ξ_1, \ldots, ξ_r} is

$$g = \text{lcm}(g_1, \ldots, g_r),$$

where g_i is the minimal polynomial of ξ_i.
Control matrix of C_{ξ_1, \ldots, ξ_r}. The condition $a(\xi_j) = 0$ can be seen as a linear relation on the components a_0, \ldots, a_{n-1} of a with coefficients $1, \xi_j, \ldots, \xi_j^{n-1}$:

$$a_0 + a_1\xi_j + \cdots + a_{n-1}\xi_j^{n-1} = 0. \tag{[*]}$$

In other words, the matrix $V_n(\xi_1, \ldots, \xi_r)^T \in M_n^r(F')$ is a control matrix of C_{ξ_1, \ldots, ξ_r}.

If we express each ξ_j^i as a vector of the components relative to a basis of F' over F, the relation $[*]$ is equivalent to m linear relations with coefficients in F that have to be satisfied by a_0, \ldots, a_{n-1}. In this way we obtain a control matrix $\overline{H} \in M_n^m(F)$ with coefficients in F, and from \overline{H} we can form a control matrix $H \in M_n^{n-k}(F)$ by eliminating linearly dependent rows.
Example (some Hamming codes are cyclic). Let \(m \) be a positive integer such that \(\gcd(m, q - 1) = 1 \), and define

\[
n = \frac{(q^m - 1)}{(q - 1)}.
\]

Let \(\omega \in F' \) be an \(n \)-th of unity of order \(n \) (if \(\alpha \in F' \) is a primitive element, we can take \(\omega = \alpha^{q-1} \)). Then \(C_\omega \) is equivalent to the Hamming code of codimension \(m \), \(\text{Ham}_q(m) \). Indeed,

\[
n = (q - 1)(q^{m-2} + 2q^{m-3} + \cdots + m - 1) + m,
\]

as it can be easily checked, and hence \(\gcd(n, q - 1) = 1 \). It follows that \(\omega^{q-1} \) is an \(n \)-th of unity of order \(n \), and therefore \(\omega^{i(q-1)} \neq 1 \) for \(i = 1, \ldots, n - 1 \). In particular, \(\omega^i \notin F \). Moreover, \(\omega^i \) and \(\omega^j \) are linearly independent over \(F \) if \(i \neq j \). As \(n \) is the greatest number of elements of \(F' \) that are pair-wise linearly independent over \(F \), the claim follows from the description above of the control matrix \(C_\omega \) and the definition of the Hamming code \(\text{Ham}_q(m) \).
BCH codes

Let $\omega \in F'$ be a primitive n-th root of unity. Let $\delta \geq 2$ and $\ell \geq 1$ be integers. Let $BCH_\omega(\delta, \ell)$ denote the cyclic code of length n generated by the least common multiple g of the minimal polynomials $g_i = p_{\omega^\ell+i}$, $i \in \{0, \ldots, \delta - 2\}$, which is called the BCH code (stemming from Bose–Chaudhuri–Hocquenghem) with *design distance* (or *intentional*) δ and *offset* ℓ. In the case $\ell = 1$, we write $BCH_\omega(\delta)$ instead of $BCH_\omega(\delta, 1)$ and we say that they are *strict BCH* codes. An BCH is called *primitive* if $n = q^m - 1$ (note that this condition is equivalent to say that ω is a primitive element of F').

Theorem (The BCH bound). If d is the minimum distance of $BCH_\omega(\delta, \ell)$, then $d \geq \delta$.

Proof. First note that an element $a \in F[x]_n$ is in $BCH_\omega(\delta, \ell)$ if and only if $a(\omega^{\ell+i}) = 0$ for all $i \in \{0, \ldots, \delta - 2\}$. But the relation $a(\omega^{\ell+i}) = 0$ is equivalent to
\[a_0 + a_1 \omega^{\ell+i} + \cdots + a_{n-1} \omega^{(n-1)(\ell+i)} = 0, \]

and hence
\[\left(1, \omega^{\ell+i}, \omega^{2(\ell+i)}, \ldots, \omega^{(n-1)(\ell+i)} \right) \]

is a control vector of \(BCH_\omega(\delta, \ell) \). Now we claim that the matrix \(H \) whose rows are the vectors \([*]\) has the property that any \(\delta - 1 \) of its columns are linearly independent. Indeed, the determinant formed by the columns \(j_1, \ldots, j_{\delta-1} \) is equal to
\[\begin{vmatrix}
\omega^{j_1 \ell} & \cdots & \omega^{j_{\delta-1} \ell} \\
\omega^{j_1(\ell+1)} & \cdots & \omega^{j_{\delta-1}(\ell+1)} \\
\vdots & \ddots & \vdots \\
\omega^{j_1(\ell+\delta-2)} & \cdots & \omega^{j_{\delta-1}(\ell+\delta-2)}
\end{vmatrix} \]

and this is non-zero if \(j_1, \ldots, j_{\delta-1} \) are distinct, as it is equal to
\[\omega^{j_1 \ell} \cdots \omega^{j_{\delta-1} \ell} \cdot V_{\delta-1}(\omega^{j_1}, \ldots, \omega^{j_{\delta-1}}). \]
Example (The minimum distance of a **BCH** code can be greater than the design distance). Let \(q = 2 \) and \(m = 4 \). Let \(\omega \) be a primitive element of \(\mathbb{F}_{16} \). Since \(\omega \) has order 15, we can apply the previous results to the case \(q = 2, m = 4 \) and \(n = 15 \). The 2-cyclotomic classes mod \(n \) are

\[
\{1,2,4,8\}, \{3,6,12,9\}, \{5,10\}, \{7,14,13,11\}.
\]

This shows, if we set \(C_\delta = BCH_\omega (\delta) \) and \(d_\delta = d_{C_\delta} \), that

\[
C_4 = C_5, \text{ and hence } d_4 = d_5 \geq 5, \text{ and}
\]
\[
C_6 = C_7, \text{ and hence } d_6 = d_7 \geq 7.
\]

Note that the dimension of \(C_4 = C_5 \) is \(15 - 2 \cdot 4 = 7 \), and that the dimension of \(C_6 = C_7 \) is \(15 - 2 \cdot 4 - 2 = 7 \).

Example. It is similar to the preceding example, with \(q = 2 \) and \(m = 5 \). Let \(\omega \) be a primitive element of \(\mathbb{F}_{32} \). The 2-cyclotomic classes mod 31 are
\{1,2,4,8,16\}, \{3,6,12,24,17\}, \{5,10,20,9,18\},
\{7,14,28,25,19\}, \{11,22,13,26,21\}, \{15,30,29,27,23\}.

Thus we see, with similar conventions as in the previous example, that

\[C_4 = C_5, \quad C_6 = C_7, \quad C_8 = C_9 = C_{10} = C_{11} \text{ and } C_{12} = C_{13} = C_{14} = C_{15}. \]

Therefore

\[d_4 = d_5 \geq 5, \quad d_6 = d_7 \geq 7, \]
\[d_8 = d_9 = d_{10} = d_{11} \geq 11, \text{ and } \]
\[d_{12} = d_{13} = d_{14} = d_{15} \geq 15. \]

If we set \(k_\delta = \dim(C_\delta) \), then we have

\[k_4 = 31 - 2 \cdot 5 = 21, \quad k_6 = 31 - 3 \cdot 5 = 16, \]
\[k_8 = 31 - 4 \cdot 5 = 11, \quad k_{12} = 31 - 5 \cdot 5 = 6. \]
Exercise. If \(\omega \) is a primitive element \(\mathbb{F}_{64} \), prove that the minimum distance of \(BCH_\omega(16) \) is \(\geq 21 \) and that its dimension is 18.

In relation to the dimension of \(BCH_\omega(\delta, \ell) \), the following bound holds:

Proposition. If \(m = e_n(q) \), then

\[
\dim BCH_\omega(\delta) \geq n - m(\delta - 1).
\]

Proof: If \(g \) is the generating polynomial of \(BCH_\omega(\delta, \ell) \), then

\[
\dim BCH_\omega(\delta) = n - \deg(g).
\]

Since \(g \) is the least common multiple of the minimal polynomials

\[
p_i = p_{\omega^{\ell+i}}, i = 1, \ldots, \ell - 1, \text{ and }
\]

\[
\deg(p_{\omega^{\ell+i}}) \leq [F':F] = m,
\]

it is clear that \(\deg(g) \leq m(\delta - 1) \), and this implies the claimed inequality.
Improving the dimension bound in the binary case

The bound in the previous proposition can be improved considerably for strict binary \textit{BCH} codes. Let \(C_i \) be the 2-cyclotomic class of \(i \mod n \). If we set \(p_i \) to denote the minimal polynomial of \(\omega^i \), where \(\omega \) is a primitive \(n \)-th root of unity, then \(p_i = p_{2i} \), as \((2i \mod n) \in C_i \). We get, if \(t \geq 1 \), that

\[
\text{lcm}(p_1, p_2, ..., p_{2t}) = \text{lcm}(p_1, p_2, ..., p_{2t-1}) \\
= \text{lcm}(p_1, p_3, ..., p_{2t-1}).
\]

Now the first of these equalities tells us that \(BCH_\omega(2t + 1) = BCH_\omega(2t) \), so that it is enough to consider, among the strict binary \textit{BCH} codes, those with odd design distance.

\textbf{Proposition.} If \(k \) is la dimension of the strict binary code \(BCH_\omega(2t + 1) \), then \(k \geq n - tm \), where \(m = e_n(2) \).
Proof: Let $g = \text{lcm}(p_1, p_2, ..., p_{2t})$ be the generating polynomial of $BCH_\omega(2t + 1)$. The we know that $k = n - \deg(g)$. But

$$g = \text{lcm}(p_1, p_3, ..., p_{2t-1})$$

and hence $\deg(g)$ is at most the sum of the degrees of $p_1, p_3, ..., p_{2t-1}$. Since the degree of p_i is at most m, it follows that $\deg(g) \leq tm$ and this establishes the claim.

Example. If we apply the bound of the previous proposition to the code $BCH_\omega(8) = BCH_\omega(9)$ of the preceding example, we get that

$$k \geq n - tm = 31 - 4 \cdot 5 = 11.$$

Since the dimension of this code is exactly 11, we see that the bound in the proposition cannot be improved in general.
Exercise. Let

\[f = X^4 + X^3 + X^2 + X + 1 \in \mathbb{Z}_2[X], \ F = \mathbb{Z}_2[X]/(f), \]

and let \(\alpha \) be a primitive element of \(F \). Find the dimension and a control matrix of \(BCH_\omega(8) \).

Example (The binary Golay code is cyclic). Let \(q = 2, \ n = 23 \) and \(m = e_n(2) = 11 \). The splitting field of \(X^{23} - 1 \in \mathbb{Z}_2[X] \) is \(L = \mathbb{F}_{2^{11}} \). The 2-cyclotomic classes mod 23 are

\[
C_0 = \{0\}, \\
C_1 = \{1,2,4,8,16,9,18,13,3,6,12\}, \\
C_5 = \{5,10,20,17,11,22,21,19,15,7,14\}.
\]

If \(\omega \in L \) is a primitive 23-rd root of unity, the generating polynomial of \(C = BCH_\omega(5) \) is \(g = \text{lcm}(p_1, p_2, p_3, p_4) = p_1 \). Since \(\deg(p_1) = |C_1| = 11 \), it turns out that \(\dim(C) = 23 - 11 = 12 \). Moreover, the minimum
distance of C is 7 and therefore C is a binary perfect code of type [23,12,7].

Exercise. Show that the minimum distance of the binary code in the previous example is 7. [**Hint.** Adapt the arguments in the presentation of the ternary Golay code as a cyclic code].

The RS codes with $n = q - 1$ turn out to be strict primitive BCH codes.

Proposition. If ω is a primitive element of a finite field $F = \mathbb{F}_q$ and $n = q - 1$, then

$$BCH_{\omega}(\delta) = RS_{1,\omega,\ldots,\omega^{n-1}}(n - \delta + 1).$$

Proof: The Vandermonde matrix $H = V_{1,\delta-1}(1, \omega, \ldots, \omega^{n-1})$ is a control matrix of $C = RS_{1,\omega,\ldots,\omega^{n-1}}(n - \delta + 1)$, **P36**. Since the i-th row of H is $1, \omega^i, \ldots, \omega^{i(n-1)}$, the vectors $a = (a_0, a_1, \ldots, a_{n-1})$ of C are those that satisfy $a_0 + a_1 \omega^i + \cdots + a_{n-1} \omega^{i(n-1)} = 0$ for $i = 1, \ldots, \delta - 1$. In terms of the polynomial a_X, this is equivalent to say that ω^i is a root of a_X for
$i = 1, \ldots, \delta - 1$ and thereby C coincides with the cyclic code corresponding to the roots $\omega, \ldots, \omega^{\delta-1}$. But this code is precisely $BCH_\omega(\delta)$.