16. In *maximum likelihood decoding* (MLD) of a code C, the received vector y is decoded into the vector $x \in C$ (assuming that it is unique) that maximizes the probability $P(y|x)$ of receiving y when x is sent.

In *minimum error decoding* (MED), y is decoded into the vector $x \in C$ (assuming that it is unique) that maximizes the probability $P(x|y)$ of having sent x when y is received.

Prove that in a symmetric q-ary channel with probability error per symbol p (assuming $p \leq (q - 1)/q$, or $p \leq 1/2$ in the binary case):

a) $P(y|x) = (1 - p)^{n-s} \left(\frac{p}{q-1} \right)^s$, where $s = hd(y, x)$.

b) Use this formula to deduce that MLD is equivalent to minimum distance decoding (MDD).
c) \(P(x|y) = P(y|x) \frac{P(x)}{P(y)} \) and so MED of a received vector \(y \) is equivalent to maximizing \(P(y|x)P(x) = (1-p)^{n-s} \left(\frac{p}{q-1} \right)^s P(x) \). In particular we see that if the code vectors are equiprobable, then MED coincides with MLD (and with MDD).

17. If we use a code \([23,12,7]\) on a binary symmetric channel with a probability \(p \) of error per bit, what is the probability \(p' \) of a decoding error in the MDD? Use the expression of \(p' \) to find an upper bound for the probability \(\bar{p} \) of a bit error after decoding.

18. Let \(p_1 < p_2 < \cdots < p_n \) be relatively prime integers. Encode integers \(u \) such that \(0 \leq u < p_1 \cdots p_k \), for a given positive integer \(k \leq n \), as

\[
f(u) = (u \mod p_1, \ldots, u \mod p_1).
\]

Show that \(|f(u)| \geq n - k + 1 \) for any \(u \), with equality holding for some \(u \).
Linear codes

19. The matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & a \\
1 & 1 & 0 & 0 & 0 & b \\
1 & 0 & 1 & 0 & 0 & c \\
0 & 1 & 1 & 1 & 0 & d
\end{pmatrix}
\]

is the control matrix of a binary code \(C \).

a) List the vectors of \(C \) in the case \(a = b = c = d = 1 \).

b) Prove that it is possible to choose \(a, b, c, d \) in such a way that \(C \) can correct 1 error and detect 2 errors. Are there values for \(a, b, c, d \) such that \(C \) corrects 2 errors?

20. Let \(G_1 \) and \(G_2 \) be generating matrices of linear codes of type \([n_1, k, d_1] \) and \([n_2, k, d_2] \), respectively. Show that the matrices \(G_3 = \begin{pmatrix} G_1 & 0 \\ 0 & G_2 \end{pmatrix} \) and
$G_4 = (G_1 | G_2)$ generate liner codes of types $[n_1 + n_2, 2k, d_3]$ and $[n_1 + n_2, k, d_4]$, with $d_3 = \min(d_1, d_2)$ and $d_4 \geq d_1 + d_2$.

21. Let $n = rs$, where r and s are positive. Let C be the binary code of length n formed by the words $x = x_1x_2 \cdots x_n$ such that in the $s \times r$ matrix

\[
\begin{pmatrix}
 x_1 & \cdots & x_r \\
 x_{r+1} & \cdots & x_{2r} \\
 \vdots & \ddots & \vdots \\
 x_{(s-1)r+1} & \cdots & x_{sr}
\end{pmatrix}
\]

the sum of the elements of each column and of each row is 0.

a) Check that C is a linear code and find its dimension and its minimum distance.

b) Propose a decoding scheme that exploits its matrix presentation.

c) Find a generating matrix and a control matrix of the code C in the case $r = 3$ and $s = 4$.
22. Prove that the dual of an MDS linear code is an MDS code.

23 [van Lint, problem 3.8.5] Let C be a \mathbb{F}_q-linear code $[n, k]$ and G a generating matrix. Assume that no column of G is identically 0. Prove that the sum of the weights of the vectors of C is $n(q - 1)q^{k-1}$.

24. Suppose that H is a check matrix of a linear code C and set $d = d_C$. Let $(x|x') \in C$ and assume $|x'| < d$. Describe a procedure that yields x' in terms of x and H.

[This problem shows that it is possible to recover s erasures in a codeword if $s < d$. This fact is the basis of some applications, including one that makes possible to reconstruct the information stored in an array of n memory discs when some of them fail. One possibility is to code the information by means of a code C of length n and store the successive components $x_1, ..., x_n$ of $x \in C$ in n discs $D_1, ..., D_n$ (x_i is stored in D_i). If $d = d_C$, then it is possible to recover from the failure of s discs if $s < d$. Schemes of this sort are known as RAIDs, from Redundant Arrays of Inexpensive Disks].
25 (A construction of the complete binary Golay code). Let $R \in M_{12}(B)$ be the non-incidence matrix of a regular icosahedron (numbering its vertices from 1 to 12, as in the figure, the element R_{ij} is 0 if the vertices i and j are joined by an edge, and 1 otherwise).

a) Calculate R explicitly.

b) Check that $R^2 = I_{12}$, or prove it on the basis of the definition of R.

c) The matrices $G = (I_{12}|R)$ and $H = (R|I_{12})$ satisfy the relation $GH^T = 0$. Since $H = (R|I_{12}) = R(I_{12}|R)$, the code $C = \langle G \rangle = \langle H \rangle$ is self-dual.

d) That C is self-dual implies that all the elements of C have even weight. Prove that in fact the weight of all elements of C is ≥ 4.
e) Using (c), show that if \((x|y) \in C\), \(x, y \in B^{12}\), then \((y|x) \in C\), and deduce from this that the weight of every element of \(C\) is \(\geq 8\). Finally note that \(C \sim [24,12,8]\).

26. If \(F\) is a finite field of \(q\) elements, \(n = q - 1\) and \(\{\alpha_1, ..., \alpha_n\} = F^*\) (the set of non-zero elements of \(F\)), we write \(RS_F(k)\) instead of \(RS_{\alpha_1,...,\alpha_n}(k)\), and we say that it is the Reed–Solomon of dimension \(k\) of the field \(F\). In this case the elements \(h_i\) and the control matrix \(H\) take a particular simple form: prove that

\[
h_i = \alpha_i \quad \text{and} \quad H = V_{1,n-k}(\alpha_1, ..., \alpha_n),
\]

where \(V_{1,n-k}(\alpha_1, ..., \alpha_n) = (\alpha_i^j)_{1 \leq i \leq n-k}^{1 \leq j \leq n} \).

27. Let \(\rho\) be a real number such that \(0 < \rho < 1\) and \(t\) a positive integer. Let \(F\) be an arbitrary finite field and \(q = |F|\).
a) Show that if the rate of $C = RS_F(k)$ is $\geq \rho$ and C corrects t errors, then $q \geq 1 + \frac{2t}{1-\rho}$.

What is the minimum q required for a RS code with rate $3/5$ (at least) and which corrects 7 errors? What are the possible parameters for such codes?

b) If we fix q and we need a rate $\geq \rho$, what is the maximum number of errors that we can correct? (Answer: $t \leq \left\lfloor \frac{(1-\rho)(q-1)}{2} \right\rfloor$).

How many errors can we correct if $q = 256$ and the desired rate is $3/4$?

c) If we fix q and t, prove that $\rho \leq 1 - \frac{2t}{q-1}$.

What is the maximum rate that is possible if $q = 256$ and we want to correct at least 10 errors?
28. **Shortened codes**

Given a linear code $C \subset F^n$, let

$$S_n C = \{x' \in F^{n-1} | (x', 0) \in C\}.$$

This is a linear code of length $n - 1$ called the *shortening* C by the n-th coordinate (the notion of shortening by the j-th coordinate, $S_j C$, or by a set $J = \{j_1, \ldots, j_l\}$ of coordinates, $S_J C$, are defined in a similar way). If $C \sim [n, k, d]$,

(a) Prove that $S_n C \sim [n - 1, k', d']$, with $k - 1 \leq k' \leq k$ and $d' \geq d$. More generally, $S_J C \sim [n - l, k^*, d^*]$, with $k - l \leq k^* \leq k$ and $d^* \geq d$.

(b) If C is MDS, use (a) and the Singleton inequality to show the codes obtained by shortening C are MDS (or, equivalently, that $k^* = n - l$ and $d^* = d$).

(c) If $C = RS_{\alpha_1,\ldots,\alpha_n}(k)$, prove that $S_n C$ is scalarly equivalent to $RS_{\alpha_1,\ldots,\alpha_{n-1}}(k - 1)$.
(d) In part (a) we have $k' = k - 1$ if and only if not all code-vectors satisfy $x_n = 0$, and $k^* = k - l$ if and only if C is systematic with respect to the positions j_1, \ldots, j_l.

29. **Decoding of** $C = RS_{\alpha_1, \ldots, \alpha_n}(k)$ **by interpolating polynomials**

Let $x = (x_1, \ldots, x_n) = (f(\alpha_1), \ldots, f(\alpha_n)) \in C$, $f \in F[X]_k$, be the sent vector. Let $y = x + e$ be the received vector (we say e is the error vector). Let $t = [(d - 1)/2] = [(n - k)/2]$ (note that the condition $|e| \leq t$ is equivalent to $|e| < d/2$).

(a) Show that there are non-zero polynomials $P(X), Q(X) \in F[X]$ such that $\deg P(X) \leq n - t - 1$, $\deg Q(X) \leq n - t - k$, and satisfying

$$P(\alpha_i) + y_iQ(\alpha_i) = 0 \text{ for } i = 1, \ldots, n.$$

[this condition is equivalent to n homogeneous linear equations in the coefficients of P and Q, and the number of these coefficients is

$$n - t + n - t - k + 1 = n + 1 + n - k - 2t \geq n + 1.$$]
(b) Prove that if $|e| \leq t$ then $f(X) = -P(X)/Q(X)$.

(c) Use (a) and (b) to describe an algorithm to decode C.

30. Find a check matrix of $\text{Ham}_7(2)$, the Hamming code over \mathbb{F}_7 of codimension 2, and use it to decode the message

3523410610521360.