A linear code $C \subseteq F^n$ is *cyclic* if

$$(a_n, a_1, ..., a_{n-1}) \in C \text{ for all } a = (a_1, ..., a_{n-1}, a_n) \in C.$$

In order to study cyclic codes, we need to introduce a few auxiliary algebraic concepts.

We have a unique F-linear isomorphism

$$\pi : F[x]_n \rightarrow F[X]/(X^n - 1)$$

such that $x \mapsto [X]$. If $f \in F[X]$, its image $\bar{f} \in F[x]_n$ is determined by the substitution $X^j \mapsto x[j]_n = x^{j \mod n}$. We say that \bar{f} is the *cyclic reduction of order n of f*.
We can use the isomorphism π to transport the ring structure of $F[X]/(X^n - 1)$ to a ring structure of the ring $F[x]_n$. This structure is determined by the ordinary sum and product of $F[x]$, except that the product is to be reduced modulo the relation $x^n = 1$.

On the other hand we have an F-linear isomorphism

$$F^n \cong F[x]_n = \{ \lambda_1 + \lambda_2 x + \cdots + \lambda_n x^{n-1} | \lambda_i \in F \}$$

$$a = (a_1, \ldots, a_n) \mapsto a(x) = a_1 + a_2 x + \cdots + a_n x^{n-1},$$

which allows us to transfer the ring structure of $F[x]_n$ to a ring structure of F^n. The sum in this ring is the ordinary sum of vectors, and the product $p = ab$ of the vectors $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ is obtained by accumulating the product $a_i b_j$ in the component $(i + j \mod n) - 1$ of p, $1 \leq i, j \leq n$.

Notation. If $f \in F[X]$ and $a \in F[x]$, fa means $\overline{f}a$.
Lemma. $s(a) = xa$, for all $a \in F[x]_n$, where

$$\sigma(a_1 + a_2 x + \cdots + a_n x^{n-1}) = a_n + a_1 x + \cdots + a_{n-1} x^{n-1}.$$

Proof. The product xa is $a_1 x + a_2 x^2 + \cdots + a_n x^n$. Since $x^n = 1$, we have

$$xa = a_n + a_1 x + \cdots + a_{n-1} x^{n-1} = \sigma(a).$$

Proposition. A linear code C of length n is cyclic if and only if it is an ideal of $F[x]_n$.

Proof. The lemma indicates that C is cyclic if and only if $xC \subseteq C$. Now it is enough to observe that this condition implies that $x^j C \subseteq C$ for any positive integer j, and therefore that $aC \subseteq C$ for all $a \in F[x]_n$.
Construction of cyclic codes

Given \(f \in F[X] \), we set \(C_f = (\overline{f}) \subseteq F[x]_n \). Note that \(C_f = \pi((f)) \).

Lemma. If \(g \) and \(g' \) are monic divisors of \(X^n - 1 \), then

1. \(C_g \subseteq C_g' \) if and only if \(g' | g \).
2. \(C_g = C_g' \) if and only if \(g = g' \).

Proof. The inclusion \(C_g \subseteq C_g' \) implies that \(\overline{g} = a \overline{g}' \), for some \(a \in F[x]_n \). If \(a = \overline{f}, f \in F[X] \), the relation \(g = fg' \) holds mod \(X^n - 1 \). Since \(g' \) is a divisor of \(X^n - 1 \), say \(X^n - 1 = hg' \), we get \(g = fg' + hg' = (f + h)g' \), and so \(g' | g \). That \(g' | g \) implies \(C_g \subseteq C_g' \) is clear, and 2 is a direct consequence of 1 and the fact that \(g \) and \(g' \) are monic.

Proposition. Given a cyclic code \(C \) of length \(n \), there exists a unique monic divisor \(g \) of \(X^n - 1 \) such that \(C = C_g \).
Proof. Let \(g \in F[X] \) be a non-zero polynomial of minimal degree among those that satisfy \(g \in C \) (note that \(\pi(X^n - 1) = x^n - 1 = 0 \in C \), so that \(g \) exists and \(\deg(g) \leq n \)). We can assume that \(g \) is monic. Since \(C_g = (\bar{g}) \subseteq C \), we will end the proof of existence by establishing that

- \(g \) is a divisor of \(X^n - 1 \)
- \(C \subseteq C_g \).

Indeed, if \(q \) and \(r \) are the quotient and remainder of the division of \(X^n - 1 \) by \(g \), so that

\[
X^n - 1 = qg + r, \quad \deg(r) < \deg(g),
\]
then \(0 = x^n - 1 = \bar{q} \bar{g} + \bar{r} \), and therefore \(\bar{r} = -\bar{q} \bar{g} \in C_g \subseteq C \). Consequently \(r = 0 \), by definition of \(g \), and hence \(g \mid X^n - 1 \).

Let now \(a \in C \). To see that \(a \in C_g \), let

\[
a_X = a_1 + a_2X + \cdots + a_nX^{n-1},
\]
so that \(a = a_1 + a_2 x + \cdots + a_n x^{n-1} = \bar{a}_X \). Let \(q_a \) and \(r_a \) be the quotient and remainder of the Euclidean division of \(a_x \) by \(g \):

\[
a_x = q_a g + r_a, \quad \text{deg}(r_a) < \text{deg}(g).
\]

Thus \(\bar{r}_a = a - \bar{q}_a \bar{g} \in \mathbb{C}, r_a = 0 \) and \(a = \bar{q}_a \bar{g} \in C_g \).

The uniqueness of \(g \) is an immediate consequence of the previous lemma.

\[\square\]

The monic divisor \(g \) of \(X^n - 1 \) such that \(C = C_g \) is called the generating polynomial of \(C \). The polynomial \(\hat{g} = (X^n - 1)/g \) is called the control polynomial of \(C \) (we will see a reason for this term in a short while).

Remark. Given \(f \in F[X] \), the generating polynomial of \(C_f \) is \(g = \gcd(X^n - 1, f) \). Observe that

\[
C_f = (\bar{f}) = \pi((f)) = \pi((f) + (X^n - 1)) = \pi(\gcd(f, X^n - 1)).
\]
Dimension of C_g

Proposition. $\dim(C_g) = \deg(\hat{g}) = n - \deg(g)$.

Proof. It is enough to consider the F-linear map $F[X] \to F[x]_n$, $f \mapsto f \bar{g}$, and notice that its image is $(\bar{g}) = C_g$ and its kernel (\hat{g}). \qed

Notations. Instead of the set of indices $\{1, \ldots, n\}$, we will use the set $\{0, 1, \ldots, n - 1\}$. In this way $a = (a_0, a_1, \ldots, a_{n-1})$ is identified with the polynomial

$$a(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}.$$

Given $a \in F[x]_n$, we set $\ell(a) = a_{n-1}$ (the leading coefficient of a) and

$$\tilde{a} = a_{n-1} + a_{n-2} x + \cdots + a_0 x^{n-1}.$$

Then we have that

$$\ell(\tilde{a} b) = a_0 b_0 + \cdots + a_{n-1} b_{n-1}$$

(the scalar product of $a, b \in F[x]_n$).
If p is the characteristic of F, suppose that $p \nmid n$. In particular we have $n \neq 0$ in F.

Since $D(X^n - 1) = nX^{n-1} \sim X^{n-1}$ has no non-constant common divisors with $X^n - 1$, the irreducible factors f_1, \ldots, f_r of $X^n - 1$ are simple (i.e., have multiplicity 1):

$$X^n - 1 = f_1 \cdots f_r.$$

Thus the monic divisors of $X^n - 1$ have the form

$$g = f_{i_1} \cdots f_{i_s}, \ 1 \leq i_1 < \cdots < i_s \leq r.$$

From this it follows that there are exactly 2^r cyclic codes of length n. Remark, however, that there may be non-trivial equivalences among these codes (we will see examples later on).
Generating matrices

The polynomials \(u_i = x^i \bar{g} \) (0 \(\leq i < k \)) form a basis of \(C_g \). If

\[
g = g_0 + g_1 x + \cdots + g_{n-k} x^{n-k},
\]
then the \(k \times n \) matrix

\[
G = \begin{pmatrix}
g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\
0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 \\
0 & \cdots & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k}
\end{pmatrix}
\]

is a generating matrix of \(C = C_g \). Note that \(g_{n-k} = 1 \) (\(g \) is monic).

Remark. The coding \(F^k \to C_g, u \mapsto uG \), can be described, in terms of polynomials, as the map \(F[x]_k \to C_g, u \mapsto u\bar{g} \).
Normalized generating matrix

For $0 \leq j < k$, let

$$x^{n-k+j} = q_j g + r_j, \; \deg(r_j) < \deg(g).$$

Then the k polynomials $v_j = x^{n-k+j} - r_j$ form a basis of C_g and the corresponding matrix of coefficients, G', is normalized, in the sense that the submatrix formed by the last k columns of G' is the identity matrix I_k:

$$G' = -R|I_k, \; R = (r_{ji})$$

Therefore, $H' = I_{n-k}|R^T$ is a *normalized control matrix*.

Remark. Let $u \in F^k \Rightarrow F[x]_k$. Then the coding of u using the matrix G' is obtained by substituting the monomials x^j of u by v_j ($0 \leq j < k$):

$$u_0 + u_1 x + \cdots + u_{k-1} x^{k-1} \mapsto u_0 v_0 + u_1 v_1 + \cdots + u_{k-1} v_{k-1}.$$
Moreover, if H' is the control matrix of C_g associated to G', then the syndrome $s \in F^{n-k} \cong F[x]_{n-k}$ of $a \in F^n \cong F[x]_n$ coincides with the remainder of the division of a by g.

Notice that $s = aH'^T = a \begin{pmatrix} I_{n-k} \end{pmatrix}$.

The dual code

Proposition. $C_g^\perp = \tilde{C}_\tilde{g}$, where $\tilde{C}_\tilde{g}$ is the image of $C_\tilde{g}$ by the map $a \mapsto \tilde{a}$.

Proof. Since C_g^\perp and $\tilde{C}_\tilde{g}$ have dimension $n - k$, it is enough to see that $\tilde{C}_\tilde{g} \subseteq C_g^\perp$. But this is clear: if $a \in C_\tilde{g}$ and $b \in C_g$, then $ab = 0$ and consequently $\langle \tilde{a}|b \rangle = \ell(\tilde{a}b) = \ell(ab) = 0$.

\square
Since $\hat{g}, \hat{g}x, \ldots, \hat{g}x^{n-k-1}$ form a basis of $C_{\hat{g}}$, if we let

$$\hat{g} = h_0 + h_1X + \cdots + h_kX^k,$$

then

$$H = \begin{pmatrix}
 h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 \\
 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 & 0 \\
 0 & \cdots & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0
\end{pmatrix}$$

is a control matrix of C_g.
Example (The ternary Golay code). The polynomial

\[g = X^5 - X^3 + X^2 - X - 1 \]

is an irreducible factor of \(X^{11} - 1 \) over \(\mathbb{Z}_3 \). In fact, the irreducible factors of \(X^{11} - 1 \) over \(\mathbb{Z}_3 \) are \(X - 1 \), \(g \), and \(X^5 + X^4 - X^3 + X^2 - 1 \) (notice that the 3-ciclotomic classes mod 11 are \{0\}, \{1,3,9,5,4\} and \{2,6,7,10,8\}, and this shows that \(X^{11} - 1 \) two irreducible factors of degree 5).

Let \(q = 3 \), \(n = 11 \) and \(C = C_g \). Then the type of \(C \) is [11,6]. Let us see that the minimum distance of \(C \) is 5.

Let \(G \) be the normalized generating matrix of \(C \). The matrix \(\bar{G} \) (parity completion of \(G \)) satisfies that \(\bar{G} \bar{G}^T = 0 \) (in order to preserve the submatrix \(I_6 \) to the right, we place the parity symbols of the rows of \(G \) to the left, so that they form the first column of \(\bar{G} \)). It follows that the code \(\bar{C} = \langle \bar{G} \rangle \) is selfdual and therefore that the weight of any element of \(\bar{C} \) is a multiple of 3. Since the rows of \(\bar{G} \) have weight 6, the minimum distance
of \tilde{C} is 3 or 6. But every row of \tilde{G} has exactly one 0 in the first 6 columns, and the position of this 0 is different for different rows. This implies that a linear combination of two rows of \tilde{G} has weight $\geq 2 + 2$ and hence ≥ 6. Since the weight of this combination is clearly $\leq 12 - 4 = 8$, it must have weight 6. In particular, it contains exactly 2 zeros in its first six positions. This proves that a linear combination of 3 rows of \tilde{G} has at least $1 + 3$ non-zero components, and therefore it has at least weight 6. Since the combinations of 4 or more rows of \tilde{G} have weight ≥ 4, this completes the proof.

\[
\tilde{G} = \begin{pmatrix}
1 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 2 & 1 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
2 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

CC examples
cyclic-normalized-matrix[12,6]_3
Roots of a cyclic code

Let F be a finite field and $q = |F|$. Let C be a cyclic F-code of length n and g its generating polynomial. The roots of C are, by definition, the roots of g in a splitting field F' of $X^n - 1$ over F (recall that $|F'| = q^m$, where $m = e_n(q)$).

If $\omega \in F'$ is a primitive n-th root of unity and we write E_g to denote the set of those $k \in \mathbb{Z}_n$ such that ω^k is a root of g, then E_g is the union of the q-cyclotomic classes corresponding to the monic irreducible divisors of g.

If $E'_g \subseteq E_g$ is a subset formed by an element of each q-cyclotomic class contained in E_g, we say that

$$M = \{\omega^k | k \in E'_g\}$$

is a minimal set of roots of $C = C_g$.
Proposition. If M is a minimal set of roots of a cyclic code C, then

$$C = \{a \in F[x]_n \mid a(\xi) = 0 \text{ for all } \xi \in M\}.$$

Determination of a cyclic code by specifying its roots. Let now $\xi_1, \ldots, \xi_r \in F'$ be n-th roots of unity

$$C_{\xi_1, \ldots, \xi_r} = \{a \in F[x]_n \mid a(\xi_j) = 0 \text{ for all } j = 1, \ldots, r\}.$$

Then C_{ξ_1, \ldots, ξ_r} is an ideal of $F[x]_n$ and we say that it is the cyclic code determined by ξ_1, \ldots, ξ_r.

Proposition. The generating polynomial of C_{ξ_1, \ldots, ξ_r} is

$$g = \text{lcm}(g_1, \ldots, g_r),$$

where g_i is the minimal polynomial of ξ_i.
Control matrix of C_{ξ_1, \ldots, ξ_r}. The condition $a(\xi_j) = 0$ can be seen as a linear relation on the components a_0, \ldots, a_{n-1} of a with coefficients $1, \xi_j, \ldots, \xi_j^{n-1}$:

$$a_0 + a_1\xi_j + \cdots + a_{n-1}\xi_j^{n-1} = 0. \quad [*]$$

In other words, the matrix $V_n(\xi_1, \ldots, \xi_r)^T \in M_n^r(F')$ is a control matrix of C_{ξ_1, \ldots, ξ_r}.

If we express each ξ_j^i as a vector of the components relative to a basis of F' over F, the relation [*] is equivalent to m linear relations with coefficients in F that have to be satisfied by a_0, \ldots, a_{n-1}. In this way we obtain a control matrix $\bar{H} \in M_n^m(F)$ with coefficients in F, and from \bar{H} we can form a control matrix $H \in M_n^{n-k}(F)$ by eliminating linearly dependent rows.
Example (some Hamming codes are cyclic). Let m be a positive integer such that $\gcd(m, q - 1) = 1$, and define

$$n = (q^m - 1)/(q - 1).$$

Let $\omega \in F'$ be an n-th root of unity of order n (if $\alpha \in F'$ is a primitive element, we can take $\omega = \alpha^{q-1}$). Then C_ω is equivalent to the Hamming code of codimension m, $\text{Ham}_q(m)$. Indeed,

$$n = (q - 1)(q^{m-2} + 2q^{m-3} + \cdots + m - 1) + m,$$

as it can be easily checked, and hence $\gcd(n, q - 1) = 1$. It follows that ω^{q-1} is an n-th of unity of order n, and therefore $\omega^{i(q-1)} \neq 1$ for $i = 1, \ldots, n - 1$. In particular, $\omega^i \notin F$. Moreover, ω^i and ω^j are linearly independent over F if $i \neq j$. As n is the greatest number of elements of F' that are pair-wise linearly independent over F, the claim follows from the description above of the control matrix C_ω and the definition of the Hamming code $\text{Ham}_q(m)$.
BCH codes

Let $\omega \in F'$ be a primitive n-th root of unity. Let $\delta \geq 2$ and $\ell \geq 1$ be integers. Let $BCH_\omega(\delta, \ell)$ denote the cyclic code of length n generated by

$$g = \text{lcm}\left(p_{\omega^\ell}, p_{\omega^{\ell+1}}, \ldots, p_{\omega^{\ell+\delta-2}}\right).$$

It is called the BCH_{N1} code with design (or intentional) distance δ and offset ℓ.

In the case $\ell = 1$, we write $BCH_\omega(\delta)$ instead of $BCH_\omega(\delta, 1)$ and we say that they are strict BCH codes.

An BCH is called **primitive** if $n = q^m - 1$ (note that this condition is equivalent to say that ω is a primitive element of F').
Theorem (The BCH bound). If d is the minimum distance of $BCH_\omega(\delta, \ell)$, then $d \geq \delta$.

Proof. First note that an element $a \in F[x]_n$ is in $BCH_\omega(\delta, \ell)$ if and only if $a(\omega^{\ell+i}) = 0$ for all $i \in \{0, ..., \delta - 2\}$. But the relation $a(\omega^{\ell+i}) = 0$ is equivalent to

$$a_0 + a_1 \omega^{\ell+i} + \cdots + a_{n-1} \omega^{(n-1)(\ell+i)} = 0,$$

and hence

$$\left(1, \omega^{\ell+i}, \omega^{2(\ell+i)}, ..., \omega^{(n-1)(\ell+i)}\right) \quad [*]$$

is a control vector of $BCH_\omega(\delta, \ell)$. Now we claim that the matrix H whose rows are the vectors [*] has the property that any $\delta - 1$ of its columns are linearly independent. Indeed, the determinant formed by the columns $j_1, ..., j_{\delta-1}$ is equal to
and this is non-zero if $j_1, \ldots, j_{\delta-1}$ are distinct, as it is equal to

$$
\omega j_1^\ell \ldots \omega j_{\delta-1}^\ell \cdot V_{\delta-1}(\omega j_1, \ldots, \omega j_{\delta-1}).
$$

Example (The minimum distance of a **BCH** code can be greater than the design distance). Let $q = 2$ and $m = 4$. Let ω be a primitive element of \mathbb{F}_{16}. Since ω has order 15, we can apply the previous results to the case $q = 2, m = 4$ and $n = 15$. The 2-cyclotomic classes mod n are

$$
\{1,2,4,8\}, \{3,6,12,9\}, \{5,10\}, \{7,14,13,11\}.
$$

This shows, if we set $C_\delta = BCH_\omega(\delta)$ and $d_\delta = d_{C_\delta}$, that

$$
C_4 = C_5, \text{ and hence } d_4 = d_5 \geq 5, \text{ and }
$$

$$
C_6 = C_7, \text{ and hence } d_6 = d_7 \geq 7.
$$
Note that the dimension of $C_4 = C_5$ is $15 - 2 \cdot 4 = 7$, and that the dimension of $C_6 = C_7$ is $15 - 2 \cdot 4 - 2 = 5$.

Example. It is similar to the preceding example, with $q = 2$ and $m = 5$. Let ω be a primitive element of \mathbb{F}_{32}. The 2-cyclotomic classes mod 31 are

\[
\{1,2,4,8,16\}, \{3,6,12,24,17\}, \{5,10,20,9,18\}, \\
\{7,14,28,25,19\}, \{11,22,13,26,21\}, \{15,30,29,27,23\}.
\]

Thus we see, with similar conventions as in the previous example, that

\[
C_2 = C_3, C_4 = C_5, C_6 = C_7, C_8 = C_9 = C_{10} = C_{11}, C_{12} = C_{13} = C_{14} = C_{15}.
\]

Therefore

\[
d_2 = d_3 \geq 3, d_4 = d_5 \geq 5, d_6 = d_7 \geq 7, \\
d_8 = d_9 = d_{10} = d_{11} \geq 11, \text{ and} \\
d_{12} = d_{13} = d_{14} = d_{15} \geq 15.
\]
If we set \(k_\delta = \text{dim}(C_\delta) \), then we have

\[
\begin{align*}
 k_2 &= 31 - 5 = 26, \\
 k_4 &= 31 - 2 \cdot 5 = 21, \\
 k_6 &= 31 - 3 \cdot 5 = 16, \\
 k_8 &= 31 - 4 \cdot 5 = 11, \\
 k_{12} &= 31 - 5 \cdot 5 = 6.
\end{align*}
\]

Exercise. If \(\omega \) is a primitive element \(\mathbb{F}_{64} \), prove that the minimum distance of \(\text{BCH}_\omega(16) \) is \(\geq 21 \) and that its dimension is 18.

Example CC

```plaintext
# Given q and m, to find a table
#   {s-> {k_s, d_s} with s in 2..n}
# where k_s is dimension of BCH_GF(q^m)(s)
# and d_s a lower bound for the minimum distance.
# q = 2 is default value of q.

bch_dimension_distancelb(m):=
bch_dimension_distancelb(m,2);
```
bch_dimensionlbs(m,q):=
begin
 local n=q^m-1, j, C={}, D={}
 for k in 2..n do
 j=k-1
 C=union(C,cyclotomic_class(j,n,q))
 while index(j,C)!=0 do j=j+1 end
 D=D|{k->{n-length(C), j}}
 if j==n then return D else continue end
 end
end;

X=bch_dimension_distancelb(6);
{x.2→x.1 with x in X}
 →

 {1,63}→32,
 {7,31}→(28,29,30,31),
 {10,27}→(24,25,26,27),
 {16,23}→(22,23),
 {18,21}→(16,17,18,19,20,21),
In relation to the dimension of $BCH_{\omega}(\delta, \ell)$, the following bound holds:

Proposition. If $m = e_n(q)$, then

$$\dim BCH_{\omega}(\delta) \geq n - m(\delta - 1).$$

Proof: If g is the generating polynomial of $BCH_{\omega}(\delta, \ell)$, then

$$\dim BCH_{\omega}(\delta) = n - \deg(g).$$

Since g is the least common multiple of the minimal polynomials

$$p_i = p_{\omega^{\ell+i}}, i = 1, \ldots, \ell - 1,$$

and
\[
\deg(p_{\omega^{\ell+i}}) \leq [F':F] = m,
\]

it is clear that \(\deg(g) \leq m(\delta - 1) \), and this implies the claimed inequality.

Improving the dimension bound in the binary case

The bound in the previous proposition can be improved considerably for strict binary \textit{BCH} codes. Let \(C_i \) be the 2-cyclotomic class of \(i \mod n \). If we set \(p_i \) to denote the minimal polynomial of \(\omega^i \), where \(\omega \) is a primitive \(n \)-th root of unity, then \(p_i = p_{2i} \), as \((2i \mod n) \in C_i \). We get, if \(t \geq 1 \), that

\[
\text{lcm}(p_1, p_2, \ldots, p_{2t}) = \text{lcm}(p_1, p_2, \ldots, p_{2t-1})
\]

\[
= \text{lcm}(p_1, p_3, \ldots, p_{2t-1}).
\]

Now the first of these equalities tells us that \(BCH_\omega(2t + 1) = BCH_\omega(2t) \), so that it is enough to consider, among the strict binary \textit{BCH} codes, those with odd design distance.
Proposition. If k is the dimension of the strict binary code

$$BCH_\omega(2t + 1),$$

then $k \geq n - tm$, where $m = e_n(2)$.

Proof: Let $g = \text{lcm}(p_1, p_2, ..., p_{2t})$ be the generating polynomial of $BCH_\omega(2t + 1)$. The we know that $k = n - \deg(g)$. But

$$g = \text{lcm}(p_1, p_3, ..., p_{2t-1})$$

and hence $\deg(g)$ is at most the sum of the degrees of $p_1, p_3, ..., p_{2t-1}$. Since the degree of p_i is at most m, it follows that $\deg(g) \leq tm$ and this establishes the claim.

Example. If we apply the bound of the previous proposition to the code $BCH_\omega(8) = BCH_\omega(9)$, ω be a primitive element of \mathbb{F}_{32}, we get that

$$k \geq n - tm = 31 - 4 \cdot 5 = 11.$$
Since the dimension of this code is exactly 11, we see that the bound in the proposition cannot be improved in general.

Exercise. Let

\[f = X^4 + X + 1 \in \mathbb{Z}_2[X], \ F = \mathbb{Z}_2[X]/(f), \]

and let \(\alpha \) be a primitive element of \(F \). Find the dimension and a control matrix of \(BCH_\alpha(4) \).

Example CC: \texttt{bch_16(4)}.

Example (The binary Golay code is cyclic). Let \(q = 2, \ n = 23 \) and \(m = e_n(2) = 11 \). The splitting field of \(X^{23} - 1 \in \mathbb{Z}_2[X] \) is \(L = \mathbb{F}_{2^{11}} \). The 2-cyclotomic classes mod 23 are

\[
C_0 = \{0\},
C_1 = \{1,2,4,8,16,9,18,13,3,6,12\},
C_5 = \{5,10,20,17,11,22,21,19,15,7,14\}.
\]
If \(\omega \in L \) is a primitive 23-rd root of unity, the generating polynomial of \(C = BCH_\omega(5) \) is \(g = \text{lcm}(p_1, p_2, p_3, p_4) = p_1 \). Since \(\text{deg}(p_1) = |C_1| = 11 \), it turns out that \(\dim(C) = 23 - 11 = 12 \). Moreover, the minimum distance of \(C \) is 7 (see next exercise; note that by the BCH bound it is \(\geq 5 \)) and therefore \(C \) is a binary perfect code of type \([23,12,7]\).

Exercise. Show that the minimum distance of the binary code in the previous example is 7. **[Hint.** Adapt the arguments in the presentation of the ternary Golay code as a cyclic code].

Example CC: golay2

The **RS** codes with \(n = q - 1 \) turn out to be strict primitive **BCH** codes.

Proposition. If \(\omega \) is a primitive element of a finite field \(F = \mathbb{F}_q \) and \(n = q - 1 \), then

\[
BCH_\omega(\delta) = RS_{1,\omega,\ldots,\omega^{n-1}}(n - \delta + 1).
\]
Proof: The Vandermonde matrix $H = V_{1,\delta-1}(1, \omega, \ldots, \omega^{n-1})$ is a control matrix of $C = RS_{1,\omega,\ldots,\omega^{n-1}}(n - \delta + 1)$, P26. Since the i-th row of H is $1, \omega^i, \ldots, \omega^{i(n-1)}$, the vectors $a = (a_0, a_1, \ldots, a_{n-1})$ of C are those that satisfy $a_0 + a_1 \omega^i + \cdots + a_{n-1} \omega^{i(n-1)} = 0$ for $i = 1, \ldots, \delta - 1$. In terms of the polynomial a_X, this is equivalent to say that ω^i is a root of a_X for $i = 1, \ldots, \delta - 1$ and thereby C coincides with the cyclic code corresponding to the roots $\omega, \ldots, \omega^{\delta-1}$. But this code is precisely $BCH_\omega(\delta)$.

Notes

N1. From Bose–Chaudhuri–Hocquenghem. The BCH codes were proposed in 1959 by Alexis Hocquenghem (1908?-1990), in the paper *Codes correcteurs d’erreurs* (Chifres 2, 147-156), and in 1960, independently, by Raj Chandra Bose (1901-1987) and Dwijendra Kumar Ray-Chaudhuri (b. 1933), in the papers *On a class of error correcting binary group codes* and
Further results on error correcting binary group codes (Inform. Control 3, 68-79 and 279-290).

N2. In next chapter we will see that the BCH codes are a special case of alternant codes and that the BCH bound is a special case of the ‘alternant bound’. Actually the alternant bound is a straightforward transcription of the BCH bound to the more general setting of alternant codes.