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• Overall aim of my 4 lectures is to introduce you to physical applications of

Geometric Algebra (GA)

• Will do this mainly via the new mathematical tools that GA brings

• We will do this over several applications, at the end concentrating on

gravitation and cosmology, but today want to show with fairly elementary

means how we can begin to understand the nature of spinors and their role in

wave equations.

• If work in 2d, then using GA can consider complex numbers as the spinors

appropriate to two dimensions.

• This gives GA versions of analycity and the Cauchy-Riemann equations
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• In 3d will look at Pauli spinors, and then anticipating the GA of 4d space (the

Spacetime Algebra), discuss Weyl and Dirac spinors and their GA versions —

allows us to make links both with the Penrose-Rindler formalism, and the

wave equations of elementary particles

WHAT ARE SPINORS?

• You are probably familiar with them in the guise of Pauli and Dirac spinors

• Conventionally Pauli spinors are two component single column ‘vectors’ with

each component ψ1 and ψ2 a complex number

|ψ〉 =

ψ1

ψ2


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• These are acted on by ‘operators’ such as the Pauli matrices

σ̂1 =

0 1

1 0

 , σ̂2 =

0 −i
i 0

 , σ̂3 =

1 0

0 −1


• For Dirac spinors, we have 4-component complex column vectors, acted on

by combinations of the Dirac gamma matrices (will return to these later)

• The Pauli spinors are crucial in any part of non-relativistic quantum theory

involving particle spin, and the Dirac spinors underly all of quantum field

theory and quantum electrodynamics

• So what do we think spinors are in a GA approach?

• To start with will work generally

• Let us split a general Clifford space (i.e. the space of general multivectors)

into even and odd parts, defined as follows

• Suppose all the basis vectors, will call them {γµ} for the time being, are
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reversed in direction, i.e. γµ 7→ −γµ, µ = 1, . . . , n.

• This operation is called ‘inversion’

• Then an ‘even’ multivector is one which remains invariant under inversion,

whereas an ‘odd’ multivector changes sign

• The total space C(Rp,q) splits into a C+(Rp,q) and C−(Rp,q) composed of

even and odd multivectors respectively

• This splitting is independent of the basis chosen. IF E and E′ are arbitrary

elements of C+ and O and O′ of C−. then it follows

EE′ ∈ C+, EO,OE′ ∈ C−, OO′ ∈ C+

• Thus an even space C+ is picked out as special, since it forms a sub-algebra

under the geometric product

• It is this we will identify with spinors! I.e. spinors are general combinations of

the even elements of C(Rp,q)
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• The odd space C− does not form a subalgebra, but it can be put into 1-1

correspondence with C+ via the mapping C− → C+

Ob 7→ E,

where b is any non-null vector of Rp,q (same as the grade 1 elements of

C(Rp,q))

• So dimension of the spinor space is 2(n−1) in n-dimensions

• So 2 in 2d, 4 in 3d, 8 in 4d, etc.

2 DIMENSIONS

So let us look in 2d

• Basis vectors γ1, γ2, satisfying γ2
1 = 1, γ2

2 = 1, γ1γ2 = −γ2γ1

• The unit pseudoscalar for this space is

I = γ1∧γ2 = γ1γ2
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which is a bivector

• A crucial (though simple) manipulation is

I2 = (γ1γ2)(γ1γ2) = γ1(γ2γ1)γ2 = −γ1(γ1γ2)γ2 = −γ2
1γ

2
2 = −1

• This reveals that the pseudoscalar of R2 has exactly the algebraic property

required of the unit imaginary i

• Thus suggests that complex numbers, of the form z = x+ iy, may be

something quite different from how we ordinarily view them

• In fact they are the spinors of 2d!

• To show that the identification of complex numbers with C+ leads to the right

results in R2, we note that a general multivector M can be expanded there

as

M = x+ a+ Iy,

where x and y are scalars, and a = a1γ1 + a2γ2
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• Since I = γ1∧γ2 does not change sign under inversion, whereas a does,

the space of even multivectors is precisely x+ Iy and that of odd

multivectors is just all the ordinary vectors. Note that both have dimension 2

as required

• The 1-1 correspondence mentioned above takes the form

ab = a.b+ a∧b

= a.b+ (a1b2 − a2b1)I,

which if the constant vector b is taken as b = γ1 say, has the useful form

aγ1 = a1 − a2I = a∗,

where ∗ is usual complex conjugation and where we adopt the convention

that if a symbol for a vector appears in non-bold type, then it refers to the

complex number having components equal to that of the vector

• That is, if a = a1γ1 + a2γ2, then a = a1 + ia2

• (Note then that aγ1 = a∗ involves the identification of i with the I of R2.
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Will use them interchangeably for the time being.)

• The magnitude of a vector a will be denoted by |a| to avoid confusion with

the spinor a

• Using the basic relations

γ1i = γ1γ1γ2 = +γ2

γ2i = γ2γ1γ2 = −γ1

(1)

we can note what happens when we multiply a vector on the right by a

complex number z = x+ iy:

az = (a1γ1 + a2γ2)(x+ iy)

= (a1x− a2y)γ1 + (a2x+ a1y)γ2

(2)

We thus obtain another vector, as to be expected from the general relation

OE ∈ C−
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Put

a1 = R cosφ, a2 = R sinφ

and

x = r cos θ, y = r sin θ

in equation (2)

R

a
rR

az

φ

θ

• Get az = rR [cos(θ + φ)γ1 + sin(θ + φ)γ2]

• This then provides a convenient characterization of the ‘spinors’ (complex

numbers) in R2 (or indeed more generally) — they rotate and dilate a vector

into another vector

• We see that a has been rotated by z anticlockwise through angle θ and

magnified by a factor r.

• This ties in very well with the conventional Argand diagram picture of z and
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we can now see fully the basis of the distinction between R2 and the complex

plane — one is the space of conventional vectors, and the other is the space

of rotations and dilatations comprising the even sub-algebra of C(R2)

• Some further relations you might like to prove are:

az = z∗a for any a and z,

γ1a = a,

a = γ1a,

ab = a∗b,

ba = ab∗,

and so if ab = z, then ba = z∗.

• All these can be proved quickly by inspection or by expanding in a basis. The

last three relations illustrate how the non-commutative geometric product is

represented in the commutative complex variable product.
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• Note that γ1zγ1 = z∗ for any z, showing how bilinear products with γ

vectors, familiar from manipulations with the Dirac γ-matrices and Dirac

spinors (or Pauli matrices and Pauli spinors), in fact have much more homely

precedents already in complex variable theory!

GENERALIZING TO HIGHER DIMENSIONS

• Now, this all looks good, but the particular form we are using for the action of

a spinor on a vector is partially an accident of 2d

• Let’s write our spinor z = x+ Iy with x = r cos θ, y = r sin θ, in the form

z = r (cos θ + I sin θ) = reIθ

where the exponential of a multivector M is defined quite generally via a

power series in the normal way:

exp(M) = 1 +M +
1

2!
M2 +

1

3!
M3 + . . .
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• We can now apply this to rotate the vector a

a′ = az = areIθ =
(
r1/2e−Iθ/2

)
a
(
r1/2eIθ/2

)
where we have used the fact that I anticommutes with vectors to have a more

symmetrical split form for the transformation

• Let us write ψ for the spinor r1/2e−Iθ/2

• Then our transformation law is

a′ = ψaψ̃ (3)

where the reverse of a quantity in the geometric algebra is used, signified with

a ˜ acting on the object.

• Quite generally, this is defined by reversing the order of Clifford products

within the sum over blades which make up the object, e.g. (γ1γ2)̃ = γ2γ1,

etc.
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• Writing it the transformation this way, rather than as areIθ , makes no

difference in 2d, but the double-sided version is key to generalizing to higher

dimensions

• E.g., suppose we wish to include a third dimension, with vector γ3

• We would want this to be left alone by rotations in the (x, y) plane, and we

already know these can be written (taking r = 1, since just considering the

rotational rather than dilatational part) as any of

a′ = e−Iθa = aaIθ = e−Iθ/2aeIθ/2

for a vector a with just γ1 and γ2 components

• It’s only the last form, however, that satisfies the desired extension that

a′ = a when a = γ3! (This follows from γ3 commuting with γ1γ2.)

• So it’s (3) that provides the blueprint for how we transform using spinors in

higher dimensions
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SPINORS AND CALCULUS

• In the elementary Gibbs vector calculus of R3, the basic differential operator

is written

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

where i, j and k are unit vectors in the x, y, z directions

• With the usual summation convention and noting γµ = γµ for R3, we can

write this more compactly as ∇ = γµ ∂
∂xµ

• This vector differential operator, , is precisely the right object to allow

generalization of vector and complex variable calculus to general spaces

Rp,q

• As long as correct ordering is maintained, it can be substituted in place of a

non-differential vector in any multivector identity

• In particular, if r is the usual position vector (r = xµγµ) andA(r) a vector

14



field, then we have

∇A = ∇.A+ ∇∧A

in any Rp,q , generalizing the notions of divergence and curl to arbitrary

dimension

• Most importantly, this unites them into a single quantity ∇A for which an

inverse operator ∇−1 exists, and so from whichA can be recovered

• This is not true for either ∇.A or ∇∧A separately

SPECIALISATION TO 2D

• The immediate use we have for ∇ is in application to spinors, as in the Dirac

equation, and in our case we wish to do this first in the Euclidean plane

• Specialising the notation in order to emphasize an (x, y) dependence, we

rename γ1 as σx and γ2 as σy

• Thus ∇ = σx∂/∂x+ σy∂/∂y
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• A general spinor function of position in the plane will be written ψ = ψ(r)

with real and imaginary (i.e. scalar and bivector) parts given by ψ = u+ iv,

where each of u and v is a real valued function of x and y, as in the usual

theory

• If one looks at the collection of useful results in complex variable theory, it

soon becomes apparent that the aspect of differentiability they all rely on for

their proof is that the real and imaginary parts of the function satisfy the

Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
(4)

• So what is this in our terms? In fact it is very simple. It is just the requirement

that ∇ψ = 0!! We will call a spinor satisfying this, analytic. Working this out,

get

16



∇ψ =

(
σx

∂

∂x
+ σy

∂

∂y

)
(u+ iv)

=

(
∂u

∂x
− ∂v

∂y

)
σx +

(
∂u

∂y
+
∂v

∂x

)
σy,

(5)

using equation (1). Setting the right hand side to zero then yields the

Cauchy-Riemann equations (4).

• It is well known that if u and v satsify the Cauchy-Riemann equations then

each of u and v is a real harmonic function, i.e. satisfies Laplace’s equation

in 2-d.

• We can also see this directly from (5), where if we apply ∇ to both sides we

obtain (using the symmetry of the second derivative)

∇2ψ =
∂2u

∂x2
+
∂2u

∂y2
+ i

(
∂2v

∂x2
+
∂2v

∂y2

)
. (6)

• ψ analytic, i.e. ∇ψ = 0, then implies Laplace’s equation for each of u and v
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separately

• Alternatively we may note directly that

∇2 =
∂2

∂x2
+

∂2

∂y2
= ∇2,

the scalar Laplacian operator. Note that the transition from (5) to (6)

corresponds exactly to the transition from the Dirac to Klein-Gordon equations

in spacetime!

• Although we now have a definition of ‘analytic’, it is not clear what the

derivative is, in the sense of conventional complex variable theory, in which

we define a quantity

dψ

dz
= lim

∆z→0

ψ(z + ∆z)− ψ(z)

∆z
(7)

and from which the Cauchy-Riemann equations are derived by requiring that

the limit be independent of the direction in which ∆z approaches zero

• One can translate this into GA, but it turns out this standard approach is less
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useful, and carries less information than the ‘vector operator acting on a

spinor’ approach we have highlighted, so won’t go through the details

• Note e.g. the relation d
dz (z) = 1 is just ∇r = 2, and everything can be

translated in a similar way

• Why the d/dz machinery is less useful, is partially because while

conventional complex variable theory does have a lot to say about functions

which are analytic everywhere except at isolated poles (meromorphic

functions), it doesn’t have much to say about functions that are ‘non-analytic’

almost everywhere

• For example, a standard non-analytic function in conventional theory is z∗

(which we can write as z̃), about which the theory has little to say other than

that it fails the Cauchy-Riemann equations and directional derivative test

• In Geometric Calculus we can compute

∇z∗ = 2σx. (8)
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• This measure of the failure of the function to be analytic can then be used in

theorems such as Stokes’ Theorem and the generalized Cauchy Theorem

(see below) which apply perfectly well to non-analytic functions, and possibly

gives some insight into the origin of the mass terms in the Dirac and

Klein-Gordon equations.

• As a final illustration of the way that familiar notions can be viewed in an

entirely new light, and thereby become clearer and often simpler, we

comment briefly on conformal transformations

• In R2 we are familiar with the fact that for an analytic function ψ = u+ iv,

the contour surfaces of u and v form orthogonal families of curves at equal

spacings

20



• The usual proof of this consists of manipulations with the

Cauchy-Riemann equations which show ∇u.∇v = 0

and |∇u| = |∇v|

• Note that information about the handedness of the orien-

tation of the u surfaces with respect to the v surfaces is

lost in this route. In Geometric Calculus we have

∇ψ = 0⇒∇u+ ∇(iv) = 0⇒∇u = −(∇v)i

• Thus ∇u is of equal magnitude to ∇v and rotated by

90◦ clockwise with respect to it, giving first of all a very

short proof of the basic result, but also giving the hand-

edness missing in the usual route
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• Here’s an example. We’ll let the an-

alytic function be ψ(z) = z2. This

gives u = x2 − y2, v = 2xy

• Exercise: show this is analytic, i.e.

∇ψ = 0

• Diagram shows contour lines of u

(red) and v (blue) at equal incre-

ments

• Exercise: Label the contour lines with

the values of u and v and demon-

strate the handedness result just de-

scribed

• Several other results in complex variable and conformal transformation theory

are speedier in GA than via conventional theory, but want to move forward

now to unusual aspects of the GA approach, and to higher dimensions
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THE TRANSITION TO HIGHER DIMENSIONS

• We have shown how GA spinors in 2d are in fact the complex numbers, and

how the equation for an analytic function is just

∇ψ = 0

for a spinor ψ

• We have defined spinors more generally as the even subalgebra of the

Geometric Algebra in n-dimensions, and the derivative operator is defined

generally as ∇ = γµ∂/∂xµ

• So (new bit) in n dimensionsm the generalisation of 2d analytic functions is

those spinors ψ satisfying exactly the same equation ∇ψ = 0!

• These are called monogenic functions, and we can think of ∇ψ = 0 as the

generalisation of the Cauchy-Riemann equations to n-d
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• In fact, this seems to be the basic building block for the wave equations of

elementary particles!

• E.g., the wave equation for a (massless) neutrino, is exactly ∇ψ = 0 in 4d

• The wave equation for the electron, is the Dirac equation, which now has ∇ψ

given by a term proportional to the mass m, and ψ itself (will discuss this

further later).

• So what we have been doing to this point, although it looks as though it is just

a new version of complex variable theory, is in fact deeply connected with

elementary particles!

• The result we found in 2d, that the spinor is an instruction to rotate and dilate

vectors also turns out to generalise immediately

• E.g., the spinors of 4d, the Dirac wavefunctions ψ, are indeed instructions to

rotate and dilate the 4 basis vectors of spacetime, via

γµ 7→ ψγµψ̃
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• This pins down all but one of the 8 degrees of freedom in ψ

PROPAGATION AND THE CAUCHY INTEGRAL FORMULA IN GA

• As a bit of an aside, though certainly interesting, can pause to look at a

further link between complex variable theory, reinterpreted in terms of GA

spinors, and elementary particle theory

• We know a central task in quantum theory, e.g. in Quantum Electrodynamics
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(QED), is to be able to propagate a solution forwards or backwards in time

from information on some given timeslice

t

x

Know ψ here

Wish to propagate to here

• This is what the machinery of retarded, advanced and Feynman propagators

achieves

• But also, in 2d, this is what the Cauchy Integral Formula achieves!

• This tells us that for the boundary ∂M of a region M in which a function
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f(z) is analytic, and for z1 an interior point, then

f(z1) =
1

2πi

∮
∂M

f(z2)

z2 − z1
dz2 (9)

where the integral is taken with z2 tracing out the boundary in an

anticlockwise sense

• So, thinking about a case where we have a Euclidean time (i.e. a t axis but

where the corresponding basis vector has the same square as the spatial

axis), we could propagate a 2d spinor function ψ(x, t) as follows

t

x

(x2, t2)

(x1, t1)

27



• As long as (a), there were no singularities of the function within the contour,

and (b) the function decayed sufficiently rapidly to the ‘future’ that the integral

over the semicircle could be ignored, then we would merely have to integrate

at fixed t2 from x2 = −∞ . . .∞ to get

ψ(x1, t1) =
1

2πi

∫ ∞
−∞

1

(x2 − x1) + i(t2 − t1)
ψ(x2, t2) dx2

• So in fact

G(x1, t1;x2, t2) =
1

2πi

1

z2 − z1
=

1

2πi

1

(x2 − x1) + i(t2 − t1)

is what we would call the retarded propagator for this problem

• In GA, we can go a step better than the Cauchy Theorem in the form (9), and

extend it to deal with non-analytic functions as well!

• This comes out of the treatment of Stokes Theorem in GA, as discussed e.g.

in Chapter 7 of Hestenes & Sobczyk
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• Don’t have time to go through the details not, but here’s the GA version of

Cauchy’s Integral Formula, applicable to any spinor function ψ

ψ(z1) =
1

2π
σx

{∫
∂M

I−1 dS(z2)
1

z2 − z1
ψ −

∫
M
|dX(z2)|

1

z∗2 − z∗1
∇2ψ

}
(10)

• Here dS(z2) is a vector along the path (the bounding ‘surface’) and

|dX(z2)| is the scalar ‘volume element’ of the interior

• The second term is non-zero if ∇2ψ(z2) is non-zero, i.e. ψ is non-analytic

• This probably looks very abstract, but let’s show how it works in some

particular case

• E.g., let’s consider the functions ψ(z) satisfying not ∇ψ = 0 but

∇ψ = kψ

for some fixed vector k. (We can think of such a ψ as a type of ‘momentum

eigenstate’.)
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• A solution is ψ = eIk2xe−Ik1t (try this out — remember our coordinates are

(x, t), which are identical operationally to (x, y))

• By construction this ψ is non-analytic and so provides a test of the full formula

• Write x = r cos θ, t = r sin θ, k1 = |k| cosφ, k2 = |k| sinφ, then

ψ = eIr|k| sin(φ−θ)

• If we restrict attention to the

case where M is a disc ra-

diusR and z1 = 0, then the

setup becomes the following

t

x

R
dS

θ

M
∂M

z1
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• The first integral of (10) becomes∫
∂M

I−1 dS(z2)
1

z2 − z1
ψ =

∮
∂M

I−1
(
−Rσye

Iθdθ
) 1

eIθ
ψ

=

∫ 2π

0

dθσx e
IR|k| sin(φ−θ)

= 2πσx J0(R|k|)

while in the second we can replace eiθk by |k|σxe
i(φ−θ) to get

2π|k|σx

∫ R

0

J1(r|k|) dr = 2πσx [J0(R|k|)− 1] .

• The overall result from the r.h.s. of the generalized Cauchy Integral Formula is

thus 1, which is the correct value of ψ at the origin!

• We can get further insight by going to the propagator approach for getting

from one t slice to another
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• Again, won’t go into the details, but here is the answer

Gret(r1; r2) =
−1

2πI

1

z2 − z1
e(r2−r1)∧k

which is quite neat, and extends the previous result in an intuitive way

SPACETIME AND 3D SPINORS

• At this point we could continue by looking at the properties of 3d spinors (in

Quantum Mechanics these would be the Pauli spinors)

• However, it is easier and more instructive to go first to spacetime

• Can then see how the algebra of 3d space can be seen as a subset of the 4d

space, with a natural interpretation of their relation, and how 3d and 4d

spinors fit together

The spacetime algebra or STA is defined by
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1 {γµ} {γµ∧γν} {Iγµ} I

1 4 6 4 1
scalar vectors bivectors trivectors pseudoscalar

where the set of 4 vectors {γµ} (µ = 0, . . . , 3) is used for preferred
orthonormal frame, γ2

0 = +1, γ2
i = −1 for i = 1, 2, 3 and I ≡ γ0γ1γ2γ3

• The {γµ} satisfy

γµγν + γνγµ = 2ηµν

• If we reinterpret this equation with the γs being Dirac matrices, then this is

the Dirac matrix algebra

• Explains notation, but of course here the {γµ} are vectors, not a set of

matrices in ‘isospace’.

• A key insight of GA approach is relation of this Dirac algebra to the Pauli

algebra:
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• Each observer sees set of relative vectors. Model these as spacetime

bivectors. Take timelike vector γ0, relative vectors σi = γiγ0.

γ0

γi

γ′i
σi

Satisfy

σi ·σj = 1
2 (γiγ0γjγ0 + γjγ0γiγ0)

= 1
2 (−γiγj − γjγi) = δij

• Generators for a 3-d algebra! Moreover have

1
2 (σiσj − σjσi) = εijkIσk

so together with the preceding relation, the σi satisfy the same algebra as
the Pauli matrices, but we have got them in a neat way from the γ vectors

• Moreover, the volume element for the GA of the 3-d relative space in rest
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frame of γ0 is

σ1σ2σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = −γ1γ0γ2γ3 = I

which means 3-d subalgebra shares the same pseudoscalar as spacetime —
very economical!

• We can see how things fit together as follows

in rest frame of ��. Volume element

������ � 	����
	����
	����
 � ��������� � �

so 3-d subalgebra shares same pseudoscalar as spacetime.

Still have
�

�
	���� � ����
 � �������

relative vectors and relative bivectors are spacetime bivectors.

Projected onto the even subalgebra of the STA.

� ���� ���� ���� ����� �

� ���� ����� �

�� �

�� �

The 6 spacetime bivectors split into relative vectors and

relative bivectors. This split is observer dependent. A very

useful technique.

Conventions

Expression like ��� potentially confusing.

� Spacetime bivectors used as relative vectors are written in

bold. Includes the ����.

� If both arguments bold, dot and wedge symbols drop

down to their 3-d meaning.

� Otherwise, keep spacetime definition.

8

• The 6 spacetime bivectors split into relative vectors and relative bivectors.

This split is observer dependent. A very useful technique

PAULI THEORY

With this in hand, now drop down to 3d, to look at Pauli spinors.
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This works conventionally by regarding the Pauli matrices as being matrix

operators on column vectors, the latter being the Pauli spinors.

Pauli matrices are

σ̂1 =

0 1

1 0

 , σ̂2 =

0 −i
i 0

 , σ̂3 =

1 0

0 −1


Matrix operators (with hats). The {σ̂k} act on 2-component Pauli spinors

|ψ〉 =

ψ1

ψ2


ψ1, ψ2 complex. (Use bras and kets to distinguish from multivectors.)

|ψ〉 in two-dimensional complex vector space

• In GA approach, something rather remarkable happens, we can replace both

objects (operators and spinors), by elements of the same algebra. Thus

spacetime objects, and relations between them, can replace all (single
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particle) quantum statements!

• Crucial aspect we have to understand is how to model the Pauli and Dirac

spinors within STA. For Pauli spinors (2 complex entries in the column spinor),

we put ψ1 = a0 + ia3, ψ2 = −a2 + ia1 (a0, . . . , a3 real scalars) and

then the translation (conventional on left, STA on right) is

|ψ〉 =

 a0 + ia3

−a2 + ia1

 ↔ ψ = a0 + akIσk (11)

• For spin-up |+〉, and spin-down |−〉 get

|+〉 ↔ 1 |−〉 ↔ −Iσ2

• Action of the quantum operators {σ̂k} on states |ψ〉 has an analogous

operation on the multivector ψ:

σ̂k|ψ〉 ↔ σkψσ3 (k = 1, 2, 3).
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σ3 on the right-hand side ensures that σkψσ3 stays in the even subalgebra

• Verify that the translation procedure is consistent by computation; e.g.

σ̂1|ψ〉 =

−a2 + ia1

a0 + ia3


translates to

−a2 + a1Iσ3 − a0Iσ2 + a3Iσ1 = σ1ψσ3.

• Also need translation for multiplication by the unit imaginary i. Do this via

noting

σ̂1σ̂2σ̂3 =

i 0

0 i


• See multiplication of both components of |ψ〉 achieved by multiplying by the

product of the three matrix operators.
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• Therefore arrive at the translation

i|ψ〉 ↔ σ1σ2σ3ψ(σ3)3 = ψIσ3.

• Unit imaginary of quantum theory is replaced by right multiplication by the

bivector Iσ3. (Same happens in Dirac case.)

• Now define the scalar

ρ ≡ ψψ̃.

• The spinor ψ then decomposes into

ψ = ρ1/2R,

where R = ρ−1/2ψ.

• The multivector R satisfies RR̃ = 1, so is a rotor. In this approach, Pauli

spinors are simply unnormalised rotors!

This view offers a number of insights.
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• The spin-vector s defined by

〈ψ|σ̂k|ψ〉 = σk ·s.

can now be written as
s = ρRσ3R̃.

The double-sided construction of the expectation value contains an

instruction to rotate the fixed σ3 axis into the spin direction and dilate it

• Also, suppose that the vector s is to be rotated to a new vector R0sR̃0. The

rotor group combination law tells us that R transforms to R0R.

This induces the spinor transformation law

ψ 7→ R0ψ.

This explains the ‘spin-1/2’ nature of spinor wave functions
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