
RELATIVISTIC QUANTUM SPIN

Relativistic quantum mechanics of spin-1/2 particles described by Dirac theory.

The Dirac matrix operators are

γ̂0 =


 I 0

0 −I


 , γ̂k =


 0 −σ̂k
σ̂k 0


 , γ̂5 =


0 I

I 0




where γ̂5 = −iγ̂0γ̂1γ̂2γ̂3 and I is the 2× 2 identity matrix.

Act on Dirac spinors. 4 complex components (8 real degrees of freedom).

Follow same procedure as Pauli case. Map spinors onto elements of the

8-dimensional even subalgebra of the STA. First write

|ψ〉 =


|φ〉
|η〉


 ,

where |φ〉 and |η〉 are 2-component spinors. Know how to represent the latter.
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Full map is simply

|ψ〉 =

(
|φ〉
|η〉

)
↔ ψ = φ+ ησ3

Uses both Pauli-even and Pauli-odd terms.

Explicitly have: A Dirac column spinor |ψ〉 is placed in one-to-one

correspondence with an 8-component even element of the STA via

|ψ〉 =


a0 + ia3

−a2 + ia1

−b3 + ib0

−b1 − ib2

 ↔ ψ = a0 + akIσk + I(b0 + bkIσk).

The action of the operators {γ̂µ, γ̂5, i} (where γ̂5 = γ̂5 = −iγ̂0γ̂1γ̂2γ̂3)
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translates as

γ̂µ|ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3)

i|ψ〉 ↔ ψ Iσ3

γ̂5|ψ〉 ↔ ψσ3,

which are verified by simple computation; for example

γ̂5|ψ〉 =


−b3 + ib0

−b1 − ib2

a0 + ia3

−a2 + ia1

 ↔
−b3 + b0σ3 + b1iσ2 − b2iσ1

+a0σ3 + a3i− a2σ1 + a1σ2

= ψσ3

Complex conjugation in this representation translates as

|ψ〉∗ ↔ −γ2ψγ2.

What about the Dirac equation equation itself? Conventionally this is

γ̂µ(i∂µ − eAµ)|ψ〉 = m|ψ〉,
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where the Aµ is the vector potential for any EM fields which are around — we will

come back to the origin of this term later.

Applying our translation technique we find, upon postmultiplying by γ0,

∇ψIσ3 − eAψ = mψγ0, (12)

which is the form first discovered by David Hestenes

• This translation is direct and unambiguous, leading to an equation which is

not only coordinate-free (since the vectors∇ = γµ∂µ and A = γµAµ no

longer refer to any frame) but is representation-free as well!

• In manipulating (12) one needs only the algebraic rules for multiplying

spacetime multivectors, and the equation can be solved completely without

ever having to introduce a matrix representation.

• Equation (12) therefore expresses the intrinsic geometric content of the Dirac

equation.

• Now find similar insights occur as in the non-relativistic case
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• Instead of the wavefunction being a weighted spatial rotor, it’s now a full

Lorentz spinor: ψ = ρ1/2eIβ/2R with the addition of a slightly mysterious β

term related to antiparticle states.

• Five observables in all, including the current, J = ψγ0ψ̃ = ρRγ0R̃, and

the spin vector s = ψγ3ψ̃ = ρRγ3R̃, and we can picture these using the

diagram we showed earlier

• The other ‘observables’ are

related to the e1, e2 vec-

tors which lie in the ‘spin

plane’ of the electron, and

rotate within this plane with

a phase which is observable

via e.g. interference

• It’s a rotated version of the γ2γ1 = Iσ3 plane which is of course the plane in

which rotations due to the complex phase happen conventionally
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THE WEYL REPRESENTATION AND 2-SPINOR CALCULUS

• Having been explicit about our translation of quantum Dirac and Pauli spinors,

we are now in a position to begin the translation of 2-spinor theory

• For the latter we adopt the notation and conventions of the standard

exposition, Penrose & Rindler, Spinors and Spacetime, Vols 1 and 2

• This has been very influential in

mathematics and in theories of grav-

itation and elementary particles

• The two volumes of Penrose &

Rindler span nearly 1000 pages of

dense mathematics and difficult for-

mulae

• With the STA, we can compress things enormously, and still work with just the
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geometric entities of spacetime

• Probably still lots of interesting things to decode, however — this only

scratches the surface (particularly as regards twistors)

• The basic translation is as follows. In 2-spinor theory, a spinor can be written

either as an abstract index entity κA, or as a complex spin vector in

spin-space (just like a quantum Pauli spinor) κ

• We put a 2-spinor κA in 1-1 correspondence with a Clifford spinor κ via

κA ↔ κ(1 + σ3), (13)

where κ is the Clifford Pauli spinor in one to one correspondence with the

column spinor κ (via 11)

• This introduces a very useful object, the projector (1 + σ3)

• Actually easier to work with 1/2 this. Call P = 1
2 (1 + σ3). Then see

P 2 =
1

4
(1 + σ3)(1 + σ3) =

1

4

(
1 + σ3 + σ3 + σ2

3

)
= 1

2 (1 + σ3) = P
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• We call such a P an idempotent

• The function of the ‘fiducial projector’ 1
2 (1 + σ3) relates to what happens

under a ‘spin transformation’ represented by an arbitrary complex spin matrix

R

• The new spin vector isRκ and has only 4 real degrees of freedom, whereas

an arbitrary Lorentz rotation specified by a Clifford R applied to a Clifford κ

gives the quantity Rκ, which contains 8 degrees of freedom

• However, applying R to κ(1 + σ3) limits the degrees of freedom back to 4

again, in conformity with what happens in the 2-spinor formulation

• Can see this explicitly as follows. We can write a general STA spinor as

ψ = a0+a1Iσ1+a2Iσ2+a3Iσ3+
(
b0 + b1Iσ1 + b2Iσ2 + b3Iσ3

)
σ3

hence applying (1 + σ3) at the right results in a quantity we can write as
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ψ(1 + σ3) = κ(1 + σ3) where κ is the Pauli spinor

κ = (a0 + b0) + (a1 + b1)Iσ1 + (a2 + b2)Iσ2 + (a3 + b3)Iσ3

hence having just 4 degrees of freedom

• The complex conjugate spinor κA
′

introduced by P&R we find belongs to the

opposite ideal under the action of the projector (1 + σ3),

κA
′ ↔ −κIσ2(1− σ3)

• This explains why κA and its complex conjugate have to be treated as

belonging to different ‘modules’ in the Penrose and Rindler theory

• Note that in more conventional quantum notation our projectors (1± σ3)

would correspond to the chirality operators (1± γ̂5), or in the notation of the

appendix of Penrose & Rindler, Vol II, to (multiples of) Π and Π̃

• We do not use these alternative notations since it is a vital part of what we are

doing that the projection operators should be constructed from ordinary

spacetime entities.
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• The most important quantities associated with a single 2-spinor κA are its

flagpole Ka = κAκA
′
, and the flagplane determined by the bivector

P ab = κAκBεA
′B′

+ εABκA
′
κB

′

From Penrose & Rindler, Vol. I, p128
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• Here we use the Penrose notation in which a is a ‘lumped index’ representing

the spinor indices AA′ etc.

• What are the STA equivalents?

• Firstly, if we write ψ = κ(1 + σ3), the flagpole of the 2-spinor κA is just (up

to a factor 2) the Dirac current associated with the wavefunction ψ,

K = 1
2ψγ0ψ̃ = κ(γ0 + γ3)κ̃. (14)

• We see that the projector (1 + σ3) has produced a massless (null) current.

• Secondly, the flagplane bivector is a rotated version of the fiducial bivector σ1:

P = 1
2ψσ1ψ̃ = κ(γ1∧(γ0 + γ3))κ̃. (15)

• Since σ1 anticommutes with Iσ3, while γ0 commutes, P responds at double

rate to phase rotations κ 7→ κeIσ3θ , whilst the flagpole is unaffected. A

convenient spacelike vector L, perpendicular to the flagpole and satisfying
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P = L∧K , is L = (κκ̃)−1/2κγ1κ̃, that is, just the ‘body’ 1-direction.

• Another very important concept in 2-spinor theory, is that of a ‘spin-frame’,

usually written oA, ιA, but for notational reasons, and to draw out the parallel

with twistors, we prefer to write these as ωA, πA.

• In our translation, a spin-frame ωA, πA is packaged together to form a

Clifford Dirac spinor φ via

φ = ω 1
2 (1 + σ3)− πIσ2

1
2 (1− σ3). (16)

• Now

φφ̃ = 1
2κ(1 + σ3)Iσ2ω̃ + reverse = λ+ Iµ say. (17)

• If one now calculates the 2-spinor inner product for the same spin-frame one

finds

{ω,π} = ωAπ
A = −(λ+ iµ). (18)
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• Thus the complex 2-spinor inner product is in fact a disguised version of the

quantity φφ̃

• The ‘disguise’ consists of representing something that is in fact a

pseudoscalar (the I in λ+ Iµ) as an uninterpreted scalar i

• The condition for a spin frame to be normalized, ωAπ
A = 1, is in our

approach the condition for φ to be a Lorentz transformation, that is φφ̃ = 1

(except for a change of sign which in twistor terms corresponds to negative

helicity)

• We can thus say “a normalized spin frame is equivalent to a Lorentz

transformation”

• The orthonormal real tetrad, ta, xa, ya, za, determined by such a spin-frame

(P&R, Vol 1, p120), is in fact the same (up to signs) as the frame of ‘body

axes’ eµ = φγµφ̃ which we drew attention to in standard Dirac theory, whilst

the null tetrad is just a rotated version of a certain ‘fiducial’ null tetrad as

follows:
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la =
1√
2

(ta + za) = ωAωA
′ ↔ φ(γ0 + γ3)φ̃,

na =
1√
2

(ta − za) = πAπA
′ ↔ φ(γ0 − γ3)φ̃,

ma =
1√
2

(xa − iya) = ωAπA
′ ↔ −φ(γ1 + Iγ2)φ̃,

ma =
1√
2

(xa + iya) = πAωA
′ ↔ −φ(γ1 − Iγ2)φ̃.

(19)

• Note that the x or y axis is inverted with respect to the world vector

equivalents, which is a feature that occurs throughout our translation of

2-spinor theory.

• (This also applies to quaternions whose algebra is isomorphic to the even

sub-algebra of the 3d GA, the specific correspondence being

1, i, j, k ↔ 1, Iσ1,−Iσ2, Iσ3.)
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• Note also that γ1 − Iγ2 and γ1 + Iγ2 involve trivector components. This is

how complex world vectors in the Penrose & Rindler formalism appear when

translated down to equivalent objects in a single-particle STA space. These

are very interesting, since they can function as supersymmetry generators!

FIELD SUPERSYMMETRY GENERATORS

A common version of the field supersymmetry generators required for the

Poincaré super-Lie algebra uses 2-spinors Qα with Grassmann entries:

Qα = −i
(

∂

∂θα
− iσµαα′θ

α′

∂µ

)
,

where the θα and θ
α

are Grassmann variables, and µ is a spatial index

A translation of Qα into STA basically amounts to finding real spacetime

representations for the θα variables

We use the 4 quantities γ0± γ3 and γ1± Iγ2 as effective Grassmann variables,
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with the anticommutator {A,B} replaced by the symmetric product 〈ÃB〉. With

θ1 = γ0 + γ3 θ1 = γ0 − γ3

θ2 = γ1 + Iγ2 θ2 = −γ1 + Iγ2

it is a simple exercise to verify that the θα satisfy the required supersymmetry

algebra (with {A,B} ≡ 〈ÃB〉)

{θα, θβ} = {θα, θβ} = 0, {θα, θβ} = 2δαβ . (20)

This raises interesting new possibilites of being able to reduce the arena of

‘superspace’ to ordinary spacetime — however, this is still under-developed as yet

— an opportunity for the future!

Same applies to
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TWISTORS

These were first developed during the 70s and 80s, with initial hopes of providing

a completely new route through to the physics of elementary particles

Basic idea is to replace ordinary spacetime structure with incidence relations for

null vectors

Has recently been enjoying a renaissance within string theory and holography

theory, e.g. the famous AdS5/CFT correspondence

Again we think that a Geometric Algebra version could be very valuable, and

make the maths much simpler (note e.g. the Twistor Equation — quite

complicated in the two spinor formulation, ends up in translation as ∇r = 4!)

Some results in Arcaute, Lasenby & Doran, Advances in Applied Clifford

Algebras, Vol. 18, p373 (2008) and more details in math-ph/0604048 and

math-ph/0603037 (both 2006 and unpublished)
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Here’s a fundamental and interesting point:

On page 47 of Penrose & Rindler, Vol 2, the authors state ‘Any temptation to

identify a twistor with a Dirac spinor should be resisted. Though there is a certain

formal resemblance at one point, the vital twistor dependence on position has no

place in the Dirac formalism.’

We argue on the contrary that a twistor is a Dirac spinor, with a particular

dependence on position imposed.

Our fundamental translation is

Z = φ− rφ γ0 Iσ3
1
2 (1 + σ3), (21)

where φ is an arbitrary constant relativistic STA spinor, and r = xµγµ is the

position vector in 4-dimensions.

To start making contact with the Penrose notation, we decompose the Dirac

spinor Z , quite generally, as

Z = ω 1
2 (1 + σ3)− π Iσ2

1
2 (1− σ3)
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Then the pair of Pauli spinors ω and π are the translations of the 2-spinors ωA

and πA′ appearing in the usual Penrose representation

Zα = (ωA, πA′). (22)

In (22) πA′ is constant and ωA is meant to have the fundamental twistor

dependence on position

ωA = ωA0 − ixAA
′
πA′ ,

where ωA0 is constant. We thus see that the arbitary constant spinor φ in (21) is

φ = ω0
1
2 (1 + σ3)− π Iσ2

1
2 (1− σ3)

We note this is identical to the STA representation of a spin-frame.

This ability, in the STA, to package the two parts of a twistor together, and to

represent the position dependence in a straightforward fashion, leads to some

remarkable simplifications in twistor analysis.

This applies both with regard to connecting the twistor formalism with physical
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properties of particles (spin, momentum, helicity, etc.), and to the sort of

computations required for establishing the geometry associated with a given

twistor.

Here’s an interesting example

CONFORMAL GEOMETRY AND TWISTORS

• In the Arcaute et al. papers we showed how to embed twistors in the

conformal geometric algebra of 4 dimensional spacetime

• This is just like the CGA for 3d Euclidean space you have been hearing about,

but we start with the 4d STA, signature (1, 3) and add two further vectors, e

and ē with squares e2 = +1 and ē2 = −1

• So signature of the CGA is (2, 4) — a 6d space

• In this space, we can instantiate the complete 15-dimensional group of

conformal transformations of spacetime
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• Counting is 4 translations, 6 Lorentz boosts and rotations, 4 special conformal

transformations and 1 dilation

• Nature appears to know about this — Maxwell equations are invariant under

full conformal group!

• In CGA approach, everything achieved with combinations of rotations and

reflections, in a fully covariant fashion

• We embed twistors of the form we have just been discussing into this via

T = ZW1W2

where W1 and W2 are the following projection operators

W1 = 1
2 (1− Iγ3e) , W2 = 1

2 (1− Iγ3ē)

[Exercise: show that these are indeed projection operations.]

• We can then transform the T in our 6d space, to T ′ say, and ask what Z ′

satisfies T ′ = Z ′W1W2
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• This gives an induced transformation on twistor space itself

• Won’t go through details, but just want to emphasise one result: suppose we

start with our constant spinor

φ = ω0
1
2 (1 + σ3)− π Iσ2

1
2 (1− σ3)

and then translate it using the CGA by r. We get

Z = φ− rφ γ0 Iσ3
1
2 (1 + σ3),

i.e. precisely the ‘translation’ (!) we had already made of what a twistor is!

• (Note special conformal transformations give the same form but with a

(1− σ3) at the right.)

• Using this knowledge, we can unwrap some twistor geometry which is

otherwise quite mysterious, by translation to the origin

• E.g. consider the following, which shows the Robinson congruence of a

twistor (the flagpole directions of the ω part of Z)
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Figure 3. Negative helicity.
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Figure 4. Positive helicity.

following plots for two different sets. These circles do not intersect at all. Fig.5
and 6 represent two different perspectives of the congruences1.

Figure 5. Congruences
of circles.

Figure 6. Upper view
of congruences.

Let us now picture ourselves in a 3-d non-Euclidean space. If we denote by
rcirc the position vector of the circles in the congruence, its conformal representa-
tion in this space is given according to eq. (5.2) by

Xcirc =
1

s2 − u2circ
(u2circn+ 2sucirc − s2n̄) (6.11)

where ucirc = rcirc ·γ0 for consistency with the non-Euclidean space. Note that the
helicity s is identified with the fundamental length scale λ introduced to make the
null vectors X dimensionless. This is crucial in our formalism, since for cosmologi-
cal scenarios, this constant is identified with the cosmological constant! Therefore

1The lines in the plots were chosen as tubular in order to be able to distinguish each family of

circles, since otherwise the perspective is not clear in this 2-d draw.

• This is for a non-null twistor, 〈Z̃Z〉 6= 0, where it turns out that we have to

take a spherical or hyperbolic CGA as the 6d space the spinors live in

• We can do a translation back to the origin, and find

64



386 E. Arcaute, A. Lasenby and C. Doran AACA

such a constant tells us about the fundamental structure of the space, and in this
case, the helicity is the responsible of the underlying geometry of the twistor.

Let us now translate the circles to the origin, which in this space is −n̄,
in order to confirm their nature as d-lines. The rotor achieving translations in
the conformal space is of the form of eq. (5.6), therefore for this specific task it
corresponds to

T−ucirc
=

1√
s2 − u2circ

(s− ēucirc). (6.12)

The new position vector in the conformal space is thereupon

X ′circ = T−ucirc
XcircT̃−ucirc

. (6.13)

From this we can recover the 3-d position vector u′circ as follows

u′circ =
3∑

k=1

s
X ′circ · γk γk
X ′circ · n

. (6.14)

If we plot the family of circles obtained from this position vector, proceeding in
exactly the same way as before, we find a cone through the origin! See fig.7.

Figure 7. Congruence of d-lines at the origin.

This result confirms that the circles of the Robinson congruence are of geo-
detic nature, since the geodesics in a hyperbolic space are represented conformally
as circles that become straight lines at the origin (see for example [38], [13] and
[27]).

• These are just ‘d-lines’ (geodesics) through the origin, and it is only the

translation in the spherical or hyperbolic space that makes things look

complicated

See Arcaute, Lasenby & Doran, Advances in Applied Clifford Algebras, Vol. 18,

p373 (2008) for some details
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MULTIVECTOR CALCULUS AND LAGRANGIAN SYMMETRIES

• You have already had an introduction to Multivector differentiation and linear

algebra

• Want to show here how these topics are useful in Physical applications and

lead forward from this to a Multivector Calculus approach to Lagrangian

symmetries

• The following summarises what we need for physical applications, and is

taken from Appendix B of ‘Gravity, Gauge Theories and Geometric Algebra’

by Lasenby, Doran & Gull (Phil.Trans.Roy.Soc.Lond. A356 (1998) 487-582),

which will be one of our main references later (will call LDG)
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We begin with a set of results for the derivative with respect to the vector a in an

n-dimensional space

∂aa·b = b ∂aa
2 = 2a

∂a ·a = n ∂aa·Ar = rAr

∂a∧a = 0 ∂aa∧Ar = (n− r)Ar
∂aa = n ∂̇aArȧ = (−1)r(n− 2r)Ar.

[Exercise: prove these]

The results needed for the multivector derivative here (particularly for application

to the Dirac equation) are

∂X〈XA〉 = PX(A)

∂X〈X̃A〉 = PX(Ã),

where PX(A) is the projection of A onto the grades contained in X . These
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results are combined using Leibniz’ rule; for example,

∂ψ〈ψψ̃〉 = ∂̇ψ〈ψ̇ψ̃〉+ ∂̇ψ〈ψ ˙̃
ψ〉 = 2ψ̃

Note particularly that ψ̃ is not taken as an independent object from ψ, which it

effectively is in conventional approaches!

Our approach makes more sense!

Note also the two rules we use all the time in taking scaling parts:

Cyclic reordering:

〈AB . . . C〉 = 〈CAB . . .〉

Reversion:

〈AB〉 = 〈B̃Ã〉

For the action principle we also require results for the multivector derivative with

respect to the directional derivatives of a field ψ
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The aim is again to refine the calculus so that it becomes possible to work in a

frame-free manner

We first introduce the fixed frame {ej}, with reciprocal {ek}, so that ej ·ek = δjk

The partial derivative of ψ with respect to the coordinate xj = ej ·x is

abbreviated to ψ,j so that

ψ,j ≡ ej ·∇ψ
We can now define the frame-free derivative

∂ψ,a ≡ a·ej ∂ψ,j
The operator ∂ψ,a is the multivector derivative with respect to the a-derivative of

ψ. The fundamental property of ∂ψ,a is that

∂ψ,a〈b·∇ψM〉 = a·bPψ(M)

Again, more complicated results are built up by applying Leibniz’ rule. The

Euler-Lagrange equations for the Lagrangian density L = L(ψ, a·∇ψ) can now

be given in the form
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∂ψL = ∂a ·∇(∂ψ,aL)
as we shall see shortly
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