
MULTIVECTOR DERIVATIVES WITH RESPECT TO FUNCTIONS

Note to avoid any confusion: The first paper dealing with multivector differentiation

for physics, and in particular the concept of multivector derivatives with respect to

functions, was

A. N. Lasenby, C. J. L. Doran and S. F. Gull, A Multivector Derivative Approach to

Lagrangian Field Theory, Found. Phys. 23(10), 1295-1327 (1993)

Our approach and notation evolved a bit after this point, and the first definitive

treatment was in Appendix B of the GTG paper

‘Gravity, Gauge Theories and Geometric Algebra’ by Lasenby, Doran & Gull

(Phil.Trans.Roy.Soc.Lond. A356 (1998) 487-582)

referred to above

The site http://geometry.mrao.cam.ac.uk/ contains these

papers and many more
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Later will need a formalism for the derivative with respect to a linear function

Given the linear function h(a) and the fixed frame {ei}, we define the scalar

coefficients

hij ≡ ei ·h(ej)

The individual partial derivatives ∂hij are assembled into a frame-free derivative

by defining

∂h(a) ≡ a·ejei∂hij
The fundamental property of ∂h(a) is that

∂h(a)h(b)·c = a·ejei∂hij
(
h(bkek)·(clel)

)
= a·ejei∂hij (hlkbkcl)

= a·ej eicibj

= a·b c

which, together with Leibniz’ rule, is sufficient to derive all the required properties

of the ∂h(a) operator.
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For example, if B is a fixed bivector,

∂h(a)〈h(b∧c)B〉 = ∂̇h(a)〈ḣ(b)h(c)B〉 − ∂̇h(a)〈ḣ(c)h(b)B〉
= a·b h(c)·B − a·c h(b)·B
= h (a·b c− a·c b)·B
= h[a·(b∧c)]·B

This result extends immediately to give

∂h(a)〈h(Ar)Br〉 = 〈h(a·Ar)Br〉1
In particular,

∂h(a) det(h) = ∂h(a)〈h(I)I−1〉
= h(a·I)I−1 =

[
h(a·I)I−1 det(h)−1

]
det(h)

= h
−1

(a) det(h),

where the definition of the inverse you have already seen from Joan has been

employed. This derivation affords a remarkably direct proof of the formula for the
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derivative of the determinant w.r.t. the linear function (and makes sense of

formulae for differentiating determinants w.r.t. matrices — e.g. in GR need to

differentiate the metric determinant w.r.t. the metric — very hard to make sense of

conventionally)

The above results hold equally if h is replaced throughout by its adjoint h. Note,

however, that
∂h(a)h(b) = ∂h(a)〈h(c)b〉∂c

= a·c b ∂c = ba

while
∂h(a)h(b) = ∂h(a)〈h(b)c〉∂c

= a· b c ∂c = 4a·b

Thus the derivatives of h(b) and h(b) give different results, regardless of any

symmetry properties of h. This has immediate implications for the symmetry (or

lack of symmetry) of the functional stress-energy tensors for certain fields.

We finally need some results for derivatives with respect to the bivector-valued
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linear function Ω(a). The extensions are straightforward, and we just give the

required results:

∂Ω(a)〈Ω(b)M〉 = a·b〈M〉2
∂Ω(b),a〈c·∇Ω(d)M〉 = a·c b·d 〈M〉2

EULER-LAGRANGE EQUATIONS AND NOETHER’S THEOREM

Suppose that the system of interest depends on a field ψ(x), where x is a

spacetime position vector.

The action is now defined as an integral over a region of spacetime by

S =

∫
d4xL(ψ, ∂µψ, x)

where L is the Lagrangian density and xµ are a set of fixed orthonormal

coordinates for spacetime. More general coordinate systems are easily

accomodated with the inclusion of suitable factors of the Jacobian.
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We assume that ψ0(x) represents the extremal path, satisfying the desired

boundary conditions, and look for variations of the form

ψ(x) = ψ0(x) + εφ(x)

Here φ(x) is a field of the same form as ψ(x), which vanishes over the

boundary. The first-order variation in the action will involve the term (summation

convention in force)

d

dε
L (ψ0(x) + εφ(x), ∂µ (ψ0(x) + εφ(x))) = φ(x)∗∂L

∂ψ
+

∂φ

∂xµ
∗ ∂L
∂(∂µψ)

and we have

dS

dε

∣∣∣∣
ε=0

=

∫
d4x
(
φ(x)∗ ∂L

∂ψ
+

∂φ

∂xµ
∗ ∂L
∂(∂µψ)

)

The final term is integrated by parts to give
[
φ∗ ∂L

∂(∂µψ)

]
−
∫
d4xφ(x)∗ ∂

∂xµ

( ∂L
∂(∂µψ)

)
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and the boundary term vanishes. We therefore find that

dS

dε

∣∣∣∣
ε=0

=

∫
d4xφ(x)∗

(
∂L
∂ψ
− ∂

∂xµ

( ∂L
∂(∂µψ)

))
,

from which we can read off the variational equations as

∂L
∂ψ
− ∂

∂xµ

(
∂L

∂(∂µψ)

)
= 0 (23)

• Now we would like to make the transition to frame-free notation

• This is actually very useful when deriving the equations of motion

• The answer is that (23) is equivalent to the equation we gave earlier:

∂ψL = ∂a ·∇(∂ψ,aL)

and it is this latter equation we use. Can show they are equivalent as follows.

• Start with the r.h.s. of the equation just given, and expand everything in a
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basis to get

∂a ·∇(∂ψ,aL) = eν
∂

∂aν
·eµ ∂

∂xµ

((
aλeλ

)
·eα

∂L
∂ψ,α

)

= eν ·eµ ∂

∂xµ
eν ·eα

∂L
∂ψ,α

= δµα
∂

∂xµ
∂L
∂ψ,α

=
∂

∂xµ
∂L
∂ψ,µ

which indeed matches with the second term in (23).

• Note the ψ here doesn’t have to be a spinor — can apply to any type of object

in the STA as long as we remember the fundamental rules of multivector

differentiation and that

∂ψ,a〈b·∇ψM〉 = a·bPψ(M) (24)

• If more fields are present we obtain an equation of this form for each field
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DERIVING THE DIRAC EQUATION FROM A LAGRANGIAN

• So will illustrate this approach in the context of the Dirac equation

• The STA form of the Dirac Lagrangian is

L = 〈∇ψIγ3ψ̃ − eAψγ0ψ̃ −mψψ̃〉
= 〈(b·∇ψ) Iγ3ψ̃ ∂b〉 − 〈eAψγ0ψ̃ +mψψ̃〉

where ψ is an even multivector and A is an external field (which is not varied)

• In the second line we have expanded the derivative and carried out a cyclic

reordering so that we can directly use (24)

• So we first calculate ∂ψL obtaining (all steps shown)

∂ψL = (∇ψIγ3)̃ − γ0ψ̃eA− (eAψγ0)̃ −mψ̃ − (mψ)̃
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while

∂ψ,aL = a·b Iγ3 ψ̃ ∂b = Iγ3 ψ̃ a

Then we form

∂a ·∇(∂ψ,aL) = ∂a ·∇(Iγ3 ψ̃ a) = Iγ3ψ̃
←
∇

Noting that (Iγ3)̃ = −Iγ3, we therefore have overall

−Iγ3ψ̃
←
∇ −2γ0ψ̃eA− 2mψ̃ = Iγ3ψ̃

←
∇

Collecting terms, taking the reverse, and multiplying on the right by γ0, then

yields the final equation

∇ψIσ3 − eAψ −mψγ0 = 0 (25)

which is the Dirac equation in STA form.
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• Note particularly, there is no pretence of ψ and ψ̃ being independent entities,

or of just knocking off the ψ̃ at the right in the Lagrangian to get the e.o.m.

(which is sometimes suggested in the literature!)

• (Note however that (25) means the Lagrangian is in fact zero evaluated on the

e.o.m — will understand generally why this is shortly.)

• Such methods can work if you happen to know the answer, but in more

complicated cases, where e.g. gravitational terms, or torsion are present, the

multivector derivative STA method just gone through provides a fully safe

route, where you will get the right answer, even with the new fields present

CONSERVATION LAWS IN FIELD THEORY

• Want to obtain a version of Noether’s theorem appropriate for field theory

• For simplicity we assume that only one field is present. The results are easily
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extended to the case of more fields by summing over all of the fields present

• Suppose that ψ′(x) is a new field obtained from ψ(x) by a

scalar-parameterised transformation of the form

ψ′(x) = f(ψ(x), α),

with α = 0 corresponding to the identity

• We define

δψ =
∂ψ′

∂α

∣∣∣∣
α=0

• With L′ denoting the original Lagrangian evaluated on the transformed fields

we find that

∂L′
∂α

∣∣∣∣
α=0

= (δψ)∗ ∂L
∂ψ

+ ∂µ(δψ)∗ ∂L
∂(∂µψ)

=
∂

∂xµ

(
(δψ)∗ ∂L

∂(∂µψ)

)
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where we used the EL equations

∂L
∂ψ

=
∂

∂xµ

(
∂L

∂(∂µψ)

)

to substitute for the ∂L
∂ψ in the first line and notice that this then gives the total

derivative shown in the second line

• This equation relates the change in the Lagrangian to the divergence of the

current J , where

J = γµ (δψ)∗ ∂L
∂(∂µψ)

• We can write this in frame-independent form as

J = ∂a
(
δψ∗∂ψ,aL

)

and note again that this is generally applicable — e.g. ψ could be a spinor

(Dirac theory) or a vector (Electromagnetism, where the vector potential A is

the quantity we vary in the Lagrangian)
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• If the transformation is a symmetry of the system then L′ is independent of

α. In this case we immediately establish that the conjugate current is

conserved, that is

∇·J = 0

• Symmetries of a field Lagrangian therefore give rise to conserved currents.

These in turn define Lorentz-invariant constants via,

Q =

∫
d3xJ0,

where J0 = J ·γ0 is the density measured in the γ0 frame.

• The fact that this is constant follows from

dQ

dt
=

∫
d3x

∂J0

∂t
=

∫
d3x∇·J =

∮
dS n·J = 0

where we assume that the current J falls off sufficiently fast at infinity. The

value of Q is constant, and independent of the spatial hypersurface used to

define the integral
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• Note that if L′ is not independent of α, we can still get useful results from

∂L′
∂α

∣∣∣∣
α=0

= ∇·J (26)

which applies in the general case

DIRAC THEORY

To illustrate this approach, let us look at this within Dirac theory

• There are two classes of symmetry, according to whether or not the position

vector x is transformed

• Here we will consider position-independent transformations of the spinor ψ —

you could look at Section 13.3.1 of Doran & Lasenby for spacetime

transformations, which are also very interesting, and where certain spacetime

monogenics make a surprising appearance
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• So the transformations we study at this point are of the type

ψ′ = ψeαM , (27)

where M is a general multivector and α and M are independent of position

• Operations on the right of ψ arise naturally in the STA formulation of Dirac

theory, and should be thought of as generalised gauge transformations

• In the standard Dirac theory with column spinors, however, transformations

like (27) cannot be written down simply, and many of the results presented

here are much harder to derive

We have that

δψ =
∂ψ′

∂α

∣∣∣∣
α=0

= ψM

and since

∂ψ,aL = Iγ3 ψ̃ a
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for the Dirac Lagrangian, we find the current J is

J = ∂a
(
δψ∗∂ψ,aL

)
= ∂a〈ψMIγ3ψ̃a〉 = 〈ψMIγ3ψ̃〉1

• Applying (26) to (27), we thus have

∇·〈ψMIγ3ψ̃〉1 = ∂αL′|α=0 (28)

which is a result we shall exploit by substituting various quantities for M

• If M is odd, the equation yields no information, since both sides vanish

identically

• The first even M we consider is a scalar, λ, so that 〈ψMIγ3ψ̃〉1 is zero. It

follows that
∂α
(
e2αλL

)∣∣
α=0

= 0

⇒ L = 0,

so that, when the equations of motion are satisfied, the Dirac Lagrangian

vanishes (which we had already noticed above, but now know the reason)
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• We next consider a duality transformation. Setting M = I , in equation (28)

gives
−∇·(ρs) = −m∂α〈e2IαρeIβ〉

∣∣
α=0

⇒ ∇·(ρs) = −2mρ sinβ
(29)

where ψψ̃ = ρeIβ and the spin current ρs is defined as ψγ3ψ̃

• The role of the β-parameter in the Dirac equation remains unclear, although

(29) relates it to non-conservation of the spin current

• Equation (29) was already known (by David!) when we obtained it using the

multivector approach, but it didn’t seem to have been pointed out before that

the spin current is the conjugate current to duality rotations

• In conventional versions, these would be called ‘axial rotations’, with the role

of I taken by γ5

• However, in our approach, these rotations are identical to duality

transformations for the electromagnetic field (see shortly) — another

unification provided by geometric algebra
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• The duality transformation eIα is also the continuous analogue of discrete

mass conjugation symmetry, since ψ 7→ ψI changes the sign of the mass

term in L. Hence we expect that the conjugate current, ρs, is conserved for

massless particles.

• Finally, taking M to be an arbitrary bivector B yields

∇·(ψB ·(Iγ3)ψ̃) = 2〈∇ψIB ·γ3ψ̃ − eAψB ·γ0ψ̃〉

= 2
〈
eAψ(σ3Bσ3 −B)γ0ψ̃

〉
,

(30)

where we have used the equations of motion

• Both sides of (30) vanish for B = Iσ1, Iσ2 and σ3, with useful equations

arising on taking B = σ1, σ2 and Iσ3

• The last of these, B = Iσ3, corresponds to the usual U(1) gauge

transformation of the spinor field, and gives

∇·(ρv) = 0, (31)
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where ρv = ψγ0ψ̃ is the current conjugate to phase transformations, and is

strictly conserved.

• If we multiply this by e we see that this can be interpreted as the charge

current, and the ‘Q’ we would get for this as described above would be the

electric charge in a region

• The remaining transformations, eασ1 and eασ2 , give

∇·(ρe1) = 2eρA·e2

∇·(ρe2) = −2eρA·e1,
(32)

where ρeµ = ψγµψ̃

• Although these equations had been found before (again by David!), the role of

ρe1 and ρe2, as currents conjugate to right-sided eασ2 and eασ1

transformations, had not been noted

• Right multiplication by σ1 and σ2 provide continuous versions of charge
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conjugation, since the transformation ψ 7→ ψσ1 takes the Dirac equation

(25) into

∇ψiσ3 + eAψ = mψγ0.

• It follows that the conjugate currents are conserved exactly if the external

potential vanishes, or the particle has zero charge.

• Many of the results here were derived by David through an analysis of the

local observables of the Dirac theory

• However, the Lagrangian approach simplifies things and reveals that many of

the observables in the Dirac theory are conjugate to symmetries of the

Lagrangian, and that these symmetries have natural geometric interpretations

ELECTROMAGNETISM

• Worth also having a brief look at the Electromagnetic Lagrangian
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• The dynamical field we vary is the EM 4-potential A, from which the Faraday

tensor F is defined via F = ∇∧A

• The EM Lagrangian, including a term for interaction with a fixed external

current J is then

L = 1
2F ·F −A·J

• Note F = E + IB, so F ·F = E2 −B2, and is clearly an invariant under

Lorentz rotations F 7→ RFR̃ for a spacetime rotor R

• So let us get the Euler-Lagrange equations for this Lagrangian using the

above approach, with ψ = A. We have

L = 1
2 (∇∧A)·(∇∧A)−A·J

= 1
2 (∂b∧b·∇A)·(∇∧A)−A·J

= − 1
2 〈b·∇A (∂b ·(∇∧A))〉 −A·J
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• Thus

∂A,aL = − 2
2 a·b ∂b ·(∇∧A) = −a·(∇∧A)

and ∂a ·∇ of this is−∇·(∇∧A)

• Overall then, the equations of motion are

−∇·(∇∧A) = ∂AL = −J, i.e. ∇·F = J

• Combining this with the identity∇∧F = ∇∧∇∧A = 0, we get

∇F = J

i.e. the expected Maxwell equations in STA form

• We can also look at the situation as regards Noether currents

• It turns out that in this case, it’s the spacetime dependent transformations that

are the interesting ones, and these are discussed e.g. in D&L, Chap 13

• This is not unexpected, since the principle transformation of interest for EM is
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the gauge transformation

A 7→ A+∇φ(x)

where φ is a scalar function of position. Note F = ∇∧A is left invariant by

this

• However, as a little check of our understanding of what we have been carrying

out for the Dirac equation, let’s try the analogue of ψ 7→ ψeα, to see if we

expect the Lagrangian to vanish in the EM case

• We’ve already found

∂A,aL = −a·(∇∧A)

so quite generally, for a modified A 7→ A′ we have

JNoether = ∂a

(
dA′

dα

∣∣∣∣
α=0

·(−a·(∇∧A))

)

=
dA′

dα

∣∣∣∣
α=0

·F
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• Putting A′ = Aeα but leaving the external current fixed, we get

∂L′
∂α

∣∣∣∣
α=0

=
∂

∂α

[
e2α 1

2 (∇∧A)·(∇∧A)− eαA·J
]

= F ·F −A·J

• Meanwhile

∇·JNoether = ∇·(A·F ) = (∇∧A)·F −A·(∇·F ) = F ·F −A·J

• So we have verified the generalised form of Noether’s theorem, that

∂L′
∂α

∣∣∣∣
α=0

= ∇·JNoether

but we can see that due to the absence of scale invariance, for a fixed

external current, there is no reason for the Lagrangian to vanish
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THE STRESS-ENERGY TENSOR

• Now a key thing one might do at this point, in a flat space context, is look at

what the Noether current conjugate to translations is, and what translation

invariance of a system leads to

• Similarly, one could look at what the Noether current conjugate to rotations is,

and what rotational invariance of a system leads to

• Our multivector derivative approach is good for this, and leads to the

canonical stress energy tensor and canonical angular momentum tensor, and

their conservation, respectively

• However, the tensors one obtains in the way have some issues, which

historically have caused problems

• E.g., for electromagnetism, the canonical SET is not gauge-invariant, and has

to be repaired by adding in extra terms
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• And e.g. it is sometimes not clear whether one should be taking the adjoint or

non-adjoint of the tensor as being the SET (we were guilty of this originally for

the Dirac SET), or whether one should symmetrise to make all SETs

symmetric

• Similar problems with angular momentum tensors

• However, all this can be cured in a gravitational context

• Turns out that there, there is a route which always works, and avoids all the

above problems!

• So what we will do, is embark on our study of gravity now, and return to

stress-energy tensors once we have got some of the gravitational theory

established

• We start gravity by looking at:

97


