
ELECTROMAGNETISM AS A GAUGE THEORY

Start with

∇ψIσ3 = mψγ0 (33)

A global symmetry of this is

ψ 7→ ψ′ = ψeIσ3θ (34)

where θ = constant. Clearly ψ′ is a solution of (33) if ψ is.

But what if θ = θ(x)? Then, writing R = eIσ3θ , have

∇ψ′ = (∇ψ)R+ (∇θ)ψRIσ3.

and so
∇ψ′Iσ3 6= mψ′γ0.

This means the symmetry (34) does not work locally.

Why should we want it to?
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— from the structure of the physical statements of the Dirac theory.

These are of two main types:

(i) The values of observables. Formed via inner products

〈ψ|φ〉 ↔ 〈ψ̃φ〉 − 〈ψ̃φIσ3〉Iσ3

(ii) statements of equality like ψ = ψ1 + ψ2.

The physical content of both these equations is unchanged if all the spinors are

rotated by the same locally varying phase factor.

Our theory should be invariant under such changes.

COVARIANT DERIVATIVES

To achieve this, have to change the∇ operator to get rid of unwanted term in

gradient of R.
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Putting∇ = ∂aa·∇ = γµ∂µ, equation for∇ψ′ is

∇ψ′ = ∂a (a·∇ψR+ ψa·∇R) .

It is the last term which does the damage.

Therefore define a new operator D via

Dψ = ∂a
(
a·∇ψ + 1

2ψΩ(a)
)

and a new Dirac equation
DψIσ3 = mψγ0

and see what properties Ω(a) must have to remove unwanted term.

Under ψ 7→ ψ′ = ψR will have D 7→ D′ where D′ should have the same form

as D. For general φ, set

D′φ = ∂a
(
a·∇φ+ 1

2φΩ′(a)
)

Our basic requirement is that ψ′ = ψR should solve the Dirac equation with D′
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instead of D, if ψ solves the equation with D.

This will work if

D′ψ′ = D′(ψR) = (Dψ)R, (35)

since then

D′ψ′Iσ3 −mψ′γ0 = (Dψ)RIσ3 −mψRγ0

= (−mψIγ3)RIσ3 −mψRγ0 = 0

Can see generally that (35) is the right thing

— we want a D that suppresses the differentiation of R.

So let’s try our forms for D and D′. We get

D′(ψR) = ∂a
(
a·∇ψR+ ψa·∇R+ 1

2ψRΩ′(a)
)

= DψR = ∂a

(
a·∇ψ +

1

2
ψΩ(a)

)
R.

Identifying terms, we must have
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a·∇R+
1

2
RΩ′(a) =

1

2
Ω(a)R,

i.e.

Ω′(a) = R̃Ω(a)R− 2R̃a·∇R

This gives the transformation property of Ω(a)

— what type of object is it?

R̃R = 1 =⇒ a·∇R̃R+ R̃a·∇R = 0

i.e. R̃a·∇R = −
(
R̃a·∇R

)∼
which is therefore a bivector.

Thus Ω(a) must be a bivector field. It is called a connection and viewed in group

terms belongs to the Lie algebra of the symmetry group.

In general Ω(a) will not be expressible as the derivative of a rotor field. This is the

essence of the gauging step. Take something arising from a derivative, and

generalize it to a term that cannot be formed this way.
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MINIMALLY-COUPLED DIRAC EQUATION

Now restrict rotation to γ2γ1 plane using R = eIσ3θ . Then

−2R̃a·∇R = −2e−Iσ3θa·(∇θ)eIσ3θIσ3

= −2a·(∇θ)Iσ3.

Generalizing this, we can deduce Ω(a) = λa·AIσ3 where A is a general

4-vector and λ a coupling constant.

Note if A were equal to∇θ, then∇∧A = 0. Will generalise this when we look

at the field strength tensor. Now have

Dψ = ∂a(a·∇ψ + 1
2λa·AψIσ3) = ∇ψ + 1

2λAψIσ3.

and so if λ = 2e then we get the ‘minimally coupled’ Dirac equation

∇ψIσ3 − eAψ = mψγ0.

This is simplest (minimal) possible modification to original equation. No extra
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terms in Fψ or F 2ψ (all acceptable). Nature appears to be ‘minimal’ in its

principles.

GAUGE PRINCIPLES FOR GRAVITATION

Aim: To model gravitational interactions in terms of (gauge) fields defined in the

STA.

A radical departure from GR! The STA is the geometric algebra of flat spacetime.

Extra fields cannot change this.

But what about standard arguments that spacetime is curved? These all involve

light paths, or measuring rods. All modeled with interacting fields. So photon

paths need not be ‘straight’.
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Get ‘minimally coupled’ Dirac equation

	���� � �#� � �����

This is simplest (minimal) possible modification to original

equation. No extra terms in $� or $ �� (all acceptable).

Nature appears to be ‘minimal’ in its principles.

GAUGE PRINCIPLES FOR GRAVITATION

Aim: To model gravitational interactions in terms of (gauge)

fields defined in the STA.

A radical departure from GR! The STA is the geometric

algebra of flat spacetime. Extra fields cannot change this.

But what about standard arguments that spacetime is curved?

These all involve light paths, or measuring rods. All modeled

with interacting fields. So photon paths need not be ‘straight’.

��

��

photon

The STA vector �� � �� has no measurable significance now.

10

The STA vector x1 − x0 has no measurable significance now. This will follow if

we ensure that all physical predictions are independent of the absolute position

and orientation of fields in the STA. Only relations between fields are important.

Becomes clearer if we consider fields. Take spinors ψ1(x) and ψ2(x). A sample

physical statement is

ψ1(x) = ψ2(x).

At a point where one field has a particular value, the second field has the same
value. This is independent of where we place the fields in the STA. And

105



independent of where we choose to locate other values of the fields. Could

equally well introduce two new fields

ψ′1(x) = ψ1(x′), ψ′2(x) = ψ2(x′),

with x′ an arbitrary function of x. Equation ψ′1(x) = ψ′2(x) has precisely the

same physical content as original.

Same is true if act on fields with a spacetime rotor

ψ′1 = Rψ1, ψ′2 = Rψ2

Again, ψ′1 = ψ′2 has same physical content as original equation. Same true of

observables, eg J = ψγ0ψ̃. Now ψ 7→ ψ′ produces the new vector

J ′ = RJR̃. Hence absolute direction irrelevant.
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DISPLACEMENTS

We write

x′ = f(x)

for an arbitrary (differentiable) map between spacetime position vectors. A rule

for relating position vectors in same space — not a map between manifolds.

Use this to move field ψ(x) to new field

ψ′(x) ≡ ψ(x′).

Call this a displacement or translation

Now consider behaviour of derivative of ψ,∇ψ = ∂a a·∇ψ. See that
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a·∇ψ′(x) = a·∇ψ[f(x)]

= limε→0
1
ε (ψ[f(x+ εa)]− ψ[f(x)])

= limε→0
1
ε (ψ[f(x) + εf(a)]− ψ[f(x)]) .

where
f(a) = f(a;x) = a·∇f(x)

and have Taylor expanded f(x+ εa) to first order. f(a) is linear on a. Suppress
position dependence where possible. Now have

a·∇ψ′(x) = lim
ε→0

1

ε
(ψ[x′ + εf(a)]− ψ(x′)) .

But this is the vector derivative with respect to x′ in f(a) direction

a·∇ψ′(x) = f(a)·∇x′ψ(x′),

where∇x′ is derivative with respect to the new vector position variable x′. Since

f(a)·∇x′ = a· f̄(∇x′)

get operator relation
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∇x = f̄(∇x′)

f(a) is coordinate-free form of Jacobian.

Now suppose we have a physical relation such as

∇φ = A.

Scalar φ and vector A. (Eg A is pure electromagnetic gauge). Now replace
φ(x) by φ′(x) = φ(x′) and A(x) by A′(x) = A(x′). Left-hand side becomes

∇φ′(x) = f̄(∇x′)φ(x′) = f̄[A(x′)] = f̄(A′)

so no longer equal to A′.

Gauge field must assemble with∇ to form object which, under displacements,

re-evaluates to derivative with respect to the new position vector. Replace∇ with

h̄(∇), with
h̄(a) = h̄(a;x)

an arbitrary function of position, and a linear function of a. Property we require is
that
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h̄′(∇φ′) = h̄′ [̄f(A′)] = h̄(A′;x′)

Suppressing position dependence, basic requirement is

h̄′(a) = h̄f̄−1(a)

for general vector a. Now systematically replace∇ by h̄(∇). Get all equations
invariant under displacements. Eg. Dirac equation is now

h̄(∇)ψIσ3 = mψγ0.

h̄-field not a connection in conventional Yang-Mills sense. But h̄-field does
ensure that a symmetry is local, so still called a gauge field.

ROTATIONS

Second symmetry we require is invariance under

ψ 7→ ψ′ = Rψ, (36)

where R is an arbitrary, position-dependent rotor in spacetime. (Say that R
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generates rotations. Understood that this includes boosts.) Back in familiar

territory now! Write

h̄(∇)ψ = h̄(∂a) a·∇ψ.
To make (36) a symmetry, modify a·∇ by adding a bivector connection Ω(a),

Daψ = a·∇+ 1
2Ω(a)ψ

where Ω(a) has the transformation law

Ω(a) 7→ Ω′(a) = RΩ(a)R̃− 2a·∇RR̃.

Since R is an arbitrary rotor, now no constraint on the terms in Ω(a). Has Ω(a)
has 6× 4 = 24 degrees of freedom.

Equation now reads

DψIσ3 = h̄(∂a)DaψIσ3 = mψγ0. (37)

Replace ψ by ψ′ and Ω(a) by Ω′(a), find that the left-hand side becomes

h̄(∂a)D′a(Rψ)Iσ3 = h̄(∂a)RDaψIσ3
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But right-hand side is simply mRψγ0. Need to transform the h̄-field as well,

h̄(a) 7→ h̄′(a) = Rh̄(a)R̃.

This is sensible. Recall h̄(∇φ) = A. Invariant under displacements. Also
invariant if both vectors are rotated. But rotation of h̄(∇φ) must be driven by

transforming h̄.

Dirac equation now invariant under both rotations and displacements. Achieved

by introducing two new gauge fields, h̄(a) and Ω(a). A total of 16 + 24 = 40

degrees of freedom!

The key to deriving the field equations in a gauge theory is the covariant field

strength tensor.

THE FIELD STRENGTH

Form commutator of covariant derivatives. First take electromagnetism,

ψ 7→ ψR. With a and b constant vectors, get
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[Da, Db]ψ = 1
2ψ[a·∇Ω(b)− b·∇Ω(a)− Ω(a)×Ω(b)]

All derivatives of ψ have canceled. (Try this as an exercise.)
Restricting to Ω(a) = −2a·AIσ3, get term in

b·∇(a·AIσ3)− a·∇(b·AIσ3)− 2a·Ab·AIσ3×Iσ3

= (a∧b)·(∇∧A)Iσ3 = (a∧b)·F Iσ3

Maps bivector a∧b linearly onto a pure phase term. In electromagnetism lose
mapping and extract F = ∇∧A. This is physical field. Vanishes if A is pure

gauge.

ROTATION GAUGE

For rotations, rotors multiply ψ from left, so

[Da, Db]ψ = 1
2R(a∧b)ψ

where
R(a∧b) = a·∇Ω(b)− b·∇Ω(a) + Ω(a)×Ω(b)
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Right-hand side is antisymmetric on a, b, so a linear function of the bivector a∧b.
Extend to general bivectors

R(a∧b+ c∧d) = R(a∧b) + R(c∧d).

Can write the field strength as,

R(B) = R(B;x)

• A position dependent, linear function of the bivector B. Returns a general

bivector, so 6× 6 = 36 Degrees of freedom.

• Term in Ω(a)×Ω(b) is non-linear. Cannot superpose two solutions to get a

third. Much more difficult than electromagnetism.

Transformation properties easy to establish

[D′a, D
′
b, ]ψ

′ = 1
2R
′(a∧b)Rψ

= R[Da, Db]ψ = 1
2RR(a∧b)ψ
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so read off that
R′(a∧b) = RR(a∧b)R̃.

Field strength now transforms under gauge transformations.

DISPLACEMENT GAUGE FIELD STRENGTH

This is slightly more complicated, so we won’t go through it here, but just state the

form of the result

The commutator of the a·h(∇) and b·h(∇) directional derivatives leads to an

object called the Torsion tensor

This is the field-strength corresponding to demanding invariance under

translations

We can write it as S(a) where

D∧h(a) ≡ S
(
h(a)

)

andD ≡ h (∂a)(a·∇+ Ω(a)×) is the appropriate derivative for objects that
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transform two-sidedly under R (i.e. all classical objects)

S(a) maps vectors to bivectors. If we want to match to General Relativity, then

the torsion needs to vanish, i.e. GR would correspond toD∧h(a) = 0

COVARIANT FIELD STRENGTHS

The S(a) just defined is already covariant under both the rotation and

displacement gauges (we jumped straight to the answer in this form).

For the rotation gauge field strength, R(a∧b), we’ve just seen that this transforms

covariantly (i.e. like R . . . R̃) under rotation gauge changes, but we need to

modify it to make it p.g. covariant.

Won’t derive it, but turns out the correct covariant field strength is

R(B) = R[h(B)]

Factor of h(B) alters rotation gauge properties.

h(a) 7→ h
′
(a) = Rh(a)R̃.
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so adjoint goes as

h(a) 7→ h′(a) = ∂b〈aRh(b)R̃〉 = h(R̃aR).

Summarise transformation properties ofR(B) by:

Displacements: R′(B, x) = R(B, x′)

Rotations: R′(B) = RR(R̃BR)R̃.

Just what we want for a covariant tensor. CallR(B) the Riemann tensor.

Similarly, for the torsion tensor, find

Displacements: S ′(a, x) = S(a, x′)

Rotations: S ′(a) = RS(R̃aR)R̃.

so have succeeded in finding successful forms of the field strengths in our theory

The next step is to set up a Lagrangian, so that we can derive the equations of

motion, but let’s have a brief interlude where we look at the forms of Riemann in

the GTG approach for standard GR solutions
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EXAMPLES

I. The Schwarzschild Solution

Spherically symmetric source, mass M at rest in γ0 frame, has

R(B) = − M

2r3
(B + 3σrBσr)

where r = |x∧γ0|, σr = x∧γ0/r’. M/2r3 controls the tidal force.

II. The Kerr Solution

Outside a rotating black hole get

R(B) = − M

2(r + IL cosθ)3
(B + 3σrBσr).

Get Schwarzschild by r 7→ r + IL cosθ. Explains complex structure in Kerr
solution!
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III. Cosmic Strings

Infinite, pressure-free string along γ3, density ρ has

R(B) = 8πρ〈BIσ3〉Iσ3

Get tidal forces in Iσ3 plane only. Magnitude determined by density.

IV. Cosmology

Isotropic, homogeneous cosmology has

R(B) = 4π(ρ+ P )B ·et et − 1
3 (8πρ+ Λ)B.

P and ρ are pressure and density, Λ is the cosmological constant, and et is
‘rest-frame’ of the universe (defined by the cosmic microwave background

radiation). No other direction present.

The ability to represent the Riemann so compactly (and informatively!) in these

ways is unique to GA and GTG. E.g. the Kerr form normally takes pages to
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describe in conventional approaches, and these miss the essential role of the

spacetime pseudoscalar.

LAGRANGIAN AND FIELD EQUATIONS

We seek the simplest scalar object that is fully invariant under our position gauge

and rotation gauge transformations. We know thatR(a∧b) is fully covariant

under both, so we contractR(a∧b) and define the Ricci tensor

R(b) = ∂a ·R(a∧b)

(NB. Same symbol. Grade of argument distinguishes type.)

Contract again to get Ricci scalar

R = ∂a ·R(a)

Our first scalar observable. Note can write in a form where the dependence on

the gauge functions is clearer:

120



R = 〈h(∂c∧∂b)R(b∧c)〉
((Exercise: prove this.) This will be our Lagrangian density which we will now use

in a

LAGRANGIAN-BASED MULTIVECTOR DERIVATIVE APPROACH

• Will use our multivector derivative approach to deriving the e.o.m.

• Since don’t have too much time, will illustrate this just for the equations

involving the Einstein tensor and stress-energy tensor

• These are what’s called the Einstein equations anyway, (GR effectively just

assumes a priori that the torsion vanishes) and will give us the chance to

illustrate some points about SETs that we alluded to earlier

• However, will state the results for the torsion field, since this will enable us to

see how torsion can be induced by quantum spin
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We take the overall action integral to be of the form

S =

∫
|d4x| deth−1( 1

2R+ Λ− κLm),

where Lm describes the matter content and κ = 8πG.

The deth−1 part is included to make the
∫
|d4x| invariant under remappings

(see GTG paper for details).

We have also included the cosmological constant Λ, which on invariance grounds

is another term we are free to add in

The independent dynamical variables are h(a) and Ω(a), and we assume that

Lm contains no second-order derivatives, so that h(a) and Ω(a) appear

undifferentiated in the matter Lagrangian.

The h-field is undifferentiated in the entire action, so the Euler–Lagrange equation

for h is simply

∂h(a)

(
deth−1(R/2 + Λ− κLm)

)
= 0.
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Employing the results on multivector differentiation from above we find that

∂h(a) deth−1 = −deth−1h−1(a)

and
∂h(a)R = ∂h(a)〈h(∂c∧∂b)R(b∧c)〉

= 2h(∂b)·R(b∧a).

It follows that

∂h(a)(R deth−1) = 2G
(
h−1(a)

)
deth−1,

where G is the Einstein tensor,

G(a) = R(a)− 1
2aR. (38)

We now define the functional matter energy-momentum tensor T (a) by

deth∂h(a)(Lm deth−1) = T
(
h−1(a)

)
.
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We therefore arrive at the equation

G(a)− Λa = κT (a).

This is the gauge theory statement of Einstein’s equation.

The source term in the Einstein equations is the functional energy-momentum

tensor, not the canonical one, and we’ll look at examples of it shortly

The other field equation arises from taking the derivative of the action w.r.t. the

Ω(a) bivector field, and the result we end up with relates the torsion

Sh(a) = D∧h(a) to the matter spin tensor

Sspin(a) = ∂Ω(a)Lm

and is the simple relation

D∧h(a) = κSspinh(a)
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THE MATTER CONTENT

To illustrate the structure of the source terms we return to the covariant Maxwell

and Dirac Lagrangian densities. First consider free-field electromagnetism. Under

displacements, the vector potential A transforms as

A(x) 7→ A′(x) = f̄
(
A(x′)

)
, (39)

and the field strength F transforms as

F 7→ F ′(x) = ∇∧A′(x) = f̄
(
F (x′)

)
. (40)

The covariant field strength is therefore defined by

F = h(F ) = h(∇∧A), (41)

and the covariant Lagrangian density for the electromagnetic field is

LEM = 1
2F ·F . (42)
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The functional energy-momentum tensor is defined by

Tem
(
h−1(a)

)
= deth∂h(a)(

1
2F ·F deth−1)

= h(a·F )·F − h−1(a).

(exercise) so we obtain

Tem(a) = (a·F)·F − a = − 1
2FaF . (43)

This is precisely the form we would expect for the covariant generalisation of the

electromagnetic field strength.

Unlike the canonical definition mentioned above, there is no issue about the

tensor being electromagnetic gauge invariant, and the tensor is automatically

symmetric.

Furthermore, there is no coupling to Ω(a), so the electromagnetic spin density is

zero (it turns out the canonical angular momentum tensor is non-zero for EM —

actually this has some interest — photons are spin-1!)

As an example of a field with non-vanishing spin density we next consider the
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Dirac theory. With the electromagnetic coupling included, the fully covariant Dirac

Lagrangian reads

S =

∫
d4x det(h)−1〈h̄(∂a)(a·∇ψ+ 1

2Ω(a)ψ)Iγ3ψ̃−eh̄(A)ψγ0ψ̃−mψψ̃〉.

The functional energy-momentum tensor is simply

TD(a) = 〈a·h̄(∂b)DbψIγ3ψ̃〉1 − ea·Aψγ0ψ̃. (44)

This is manifestly a covariant tensor, though it is not necessarily symmetric. The

spin density is

Sspin(a) = 1
2h(a)·(ψIγ3ψ̃)

or, covariantly,

Sspin(a) = 1
2a·(ψIγ3ψ̃) = 1

2a·S
where S is the spin trivector. We can then use this as the source term in the

equation for torsion.

The SET given in (44) settles the question of the correct SET within Dirac theory,
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and as stated, will not in general be symmetric.

One can show that the antisymmetric part is given by the covariant divergence of

the spin trivector

This is general — i.e. for any SET one can demonstrate that its antisymmetric part

is a total divergence, thus won’t show up in integral quantities constructed from

the SET, but could e.g. require a non-symmetric Einstein tensor, which is possible

if there is torsion.

A NEW SPACE

It is worth considering an aspect of the novelty of our gauge theory approach

The space that our covariant vectors live in simply doesn’t exist in any

conventional treatments of differential geometry

Vectors transform like ∂µx (with f(a)) or like∇ (with f
−1

(a)). Mathematically

these are the vectors and 1-forms, and are thought of as separate spaces
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We use the h-field to make all same type — covariant vectors. Then just have

rotor group transformations.

g here is our version of the metric tensor, which conventionally (and here) maps

between the tangent (vector) and cotangent (1-form) spaces. We can write

g = h̄−1h−1
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and in components recover the standard GR metric as

gµν = h−1(eµ)·h−1(eν)

but in fact never any need to do this! In practice better to work in terms of the h̄

function

As David said, there is probably a lot to explore in relation to the rest of differential

geometry, not least of course the fact that everything we have been doing here in

gravity is in a flat space!

Final point, am currently working on introducing a further invariance into the

theory

SCALE INVARIANCE

• Here add an additional symmetry to those of position gauge and rotation

gauge covariance

• This is scale invariance.
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• Want to be able to rescale the h-function and other fields by an arbitrary

function of position and want physical quantities to respond covariantly under

this change

• Note that the change where we remap x to an arbitrary function of x

(x 7→ f(x)), is already included in the position-gauge freedom

• So we are not talking about x 7→ eαx

• Instead we are talking about a change in the standard of length at each point

(original Weyl idea)

• There are a variety of ways of going about this

• Have been working (in the background!) on a novel approach to this for the

last 9 years

• Gave a preliminary account in the Brazil ICCA meeting in 2008, but a lot has

changed since then

• (Didn’t manage to write up the talk, but see
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http://www.ime.unicamp.br/icca8/videos.html for a

video of the talk if interested.)

• With a colleague (Mike Hobson) we have written up the theoretical

foundations of the work, but unfortunately not in GA notation to start with!

• In fact hardest bit has been converting to conventional notation!

• So if interested have a look at Lasenby & Hobson, Gauge theories of gravity

and scale invariance. I. Theoretical foundations, arXiv:1510.06699

(provisionally accepted in JMP)

• And also see some discussion in the write-up of last year’s talk by me at the

AGACSE meeting in Barcelona, courtesy of Sebastia’s efforts as editor:

Lasenby, A.N. Adv. Appl. Clifford Algebras (2016),’ Geometric Algebra as a

Unifying Language for Physics and Engineering and Its Use in the Study of

Gravity’, doi:10.1007/s00006-016-0700-z

which is freely available online

132


