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“For geometry, you know, is the gateway to science,
and that gate is so low and small that you can enter
only as a little child.”

William Kingdon Clifford



To demonstrate how geometric algebra unifies and simplifies
Ø geometry, algebra and trigonometry

at the elementary level,
Ø thereby simplifying and facilitating mathematical 

applications to physics and engineering at the most 
advanced levels.

Purpose of this Talk 

References
• Introductory survey:   Oersted Medal Lecture 2002 (AJP)

<http://modelingnts.la.asu.edu>
• Most thorough treatment of GA fundamentals:

New Foundations for Classical Mechanics (Springer)
• Interactive presentation for high school:

GA Primer   <http://geocalc.clas.asu.edu/GAPrimer/>



• You must relearn how to multiply vectors

• Learn how vector multiplication is designed 
for optimal encoding 
of geometric structure.

To Enter the Gate to Geometric Algebra



Basic geometric-algebraic objects (H. Grassmann, 1844) 

a•Directed
line segment vector (1-vector) a

•Point scalar (0-vector) αα
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b

•

Directed
plane segment

bivector (2-vector)

a

b

c

•

Directed
volume

trivector (3-vector)

pseudoscalar in 3D

Geometric object Algebraic object ⇔



Orientation & antisymmetry of the outer product

=

a

b

a–b
ab a

–b

=

Parallelogram rule for multiplicationAnticommutivity

Orientation (–) of vectors determines orientation of products:



What we have established so far:

Geometry is built out of basic geometric objects with 
dimensions 0, 1, 2, 3, . . . , namely:
point, line segment, plane segment, space segment, . . .

Basic geometric objects are represented by algebraic objects with
grades  0, 1, 2, 3, . . . , namely: 
scalar, vector, bivector, trivector (pseudoscalar), . . .
[0-vector, 1-vector, 2-vector, 3-vector, . . . (k-vectors)]

The outer product (wedge product) enables us to 
build k-vectors out of vectors, as in 

To represent geometric concepts of magnitude and direction,
we need to extend the rules for combining k-vectors.

Assume familiarity with vector addition & scalar multiplication!



symmetric inner product (scalar-valued)

∧

antisymmetric outer product:

Geometric algebra = Clifford algebra (1878)
with geometric meaning!

Combine
to form a single geometric product:

Theorem:
Collinear vectors commute:

Orthogonal vectors anticommute:



Understanding the import of this formula:

is the single most important step in unifying the mathematical
language of physics.

This formula integrates the concepts of
• vector
• complex number
• quaternion
• spinor
• Lorentz transformation

And much more!

We consider first how it integrates vectors and 
complex numbers into a powerful tool for 2D physics.



Consider the important special case of a unit bivector i 
It has two kinds of geometric interpretation!

b

a

b

a
So •  i ≈ oriented unit area for a plane

I. Object interpretation as an oriented area (additive)
Can construct i from a pair of orthogonal unit vectors:

b

a
II. Operator interpretation as rotation by 90o (multiplicative)

depicted as a directed arc

•  i ≈ rotation by a right angle:So

a

b



a2 = b2 = 1 ab = Uθ

The operator interpretation of i generalizes to the concept of
Rotor       , the entity produced by the geometric product ab

of unit vectors with relative angle θ.
Rotor is depicted as a directed arc on the unit circle.

Reversion:



Defining sine and cosine functions
from products of unit vectors

i  = unit bivector

Rotor:



The concept of rotor generalizes to the concept of 
complex number interpreted as a directed arc.

Modulus

Reversion = complex conjugation

This represention of complex
numbers in a real GA is a 
special case of spinors for 3D.



• Our development of GA to this point is sufficient to 
formulate and solve any problem in 2D physics
without resorting to coordinates.
• Of course, like any powerful tool, it takes some skill to
apply it effectively.
• For example, every physicist knows that skillful use of 
complex numbers avoids decomposing them into real 
and imaginary parts whenever possible.
• Likewise, skillful use of the geometric product avoids
decomposing it into inner and outer products.

• In particular, note the one-to-one correspondence
between algebraic operations and geometric depictions!

• In the next portion of this lecture I demonstrate how 
rotor algebra facilitates the treatment of 2D rotations
and mechanics.



Properties of rotors
Rotor equivalence      of    directed arcs

is like
Vector equivalence    of    directed line segments
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Properties of rotors
Rotor equivalence      of    directed arcs

is like
Vector equivalence    of    directed line segments



Properties of rotors
Product of rotors                                  Addition of arcs

UθUϕUθ, Uϕ =          Uθ+ϕ



Properties of rotors
Rotor-vector product = vector

Uθ, v Uθv =            u



Basis for 
Generated by orthonormal frame

Scalars
(0-vectors}

Vectors
(1-vectors)

Bivectors
(2-vectors)

Pseudoscalar  (3-vector):

Expanded form for any multivector M in





Canonical form: if

Reflection in a plane with normal a



Reflection in a plane with normal a

Canonical form: if

Proof:
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Reflection in a plane with normal a

Canonical form: if

Proof:



Reflection in a plane with normal a

Canonical form: if

Proof:



Rotation as double reflection          
represented by rotor:

Proof:
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Proof:

Rotation as double reflection          
represented by rotor:



Proof:

Rotation as double reflection          
represented by rotor:



U represents rotation through twice the angle between a and b.

Proof:

Rotation as double reflection          
represented by rotor:



Summary: Orthogonal transformations in Euclidean space

Main advantage:

Orthogonal transformation

Defining property :

Unimodular versor:

Versor parity:                   if U odd (reflection)
if U even (rotation)

Composition of transformations:

Canonical form:

Reduced to versor products:



Rotor products   ⇔ composition of rotations in 3D

U1



U1 , U2

Rotor products   ⇔ composition of rotations in 3D



U1 , U2

U2U1  

Rotor products   ⇔ composition of rotations in 3D



U1 , U2

U2U1  =   (bc)(ca)

Rotor products   ⇔ composition of rotations in 3D



U1 , U2

U2U1  =   (bc)(ca)

=  ba = U3

U2 U1 =  U3 

Rotor products   ⇔ composition of rotations in 3D



Noncommutativity of Rotations

U2 (U1)  =  U2U1

U1 (U2)  =  U1U2
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Noncommutativity of Rotations

U2 (U1)  =  U2U1

U1 (U2)



Noncommutativity of Rotations

U2 (U1)  =  U2U1

U1 (U2)  =  U1U2



What have we learned so far?
• Rules for multiplying vectors that apply to 

vector spaces of any dimension.

• Integration of complex numbers with 
vectors, and interpretation as directed arcs.

• Geometric meaning of the geometric 
product and its component parts in

• How rotor algebra clarifies and facilitates
the treatment of rotations in 2D and 3D.



Point symmetry groups of molecules & crystals

• Increasing in importance as we enter the age
of nanoscience and molecular biology

• Each finite symmetry group is generated 
multiplicatively by 3 vectors in GA

• GA makes point groups accessible to students 
early in the curriculum at no academic cost



Symmetries of the Cube

Generators: a, b, c

Relations:

Symbol:  {4, 3, 2}



Generators:  a, b, c

32 Lattice Point Groups

Crystallographic restriction:

Groups {p, q, r}

Tetrahedral group       {3, 3, 3}

Octahedral group {4, 3, 2}

Icosahedral group {5, 3, 2}

Relations: Roots of –1



230 distinct 3D Space Groups

D. Hestenes & J. Holt, The Crystallographic Space Groups in Geometric Algebra, 
Journal of Mathematical Physics . 48, 023514 (2007)

• Generated by reflections in 5D Minkowski space
• wherein Euclidean points are represented by null vectors
• the optimal representation for 3D Euclidean space

Echard Hitzer & Christian Perwass     
http://www.spacegroup.info

•  Interactive Visualization of the 32 3D Point Groups
•  Interactive Visualization of the 17 2D Space Groups
•  Space Group Visualizer for the 230 3D Space Groups
•  Contacts with International Union of Crystallography (IUCr)
Towards Official Adoption of The Space Group Visualizer Software
• Great potential for molecular modeling and diffraction theory!



Summary for rotations in 2D, 3D and beyond

Thm. II: Every rotation in 3D can be expressed as product of two reflections:

Generalizations:
III. Thm I applies to Lorentz transformations of spacetime
IV.  Cartan-Dieudonné Thm (Lipschitz, 1880): Every orthogonal 

transformation can be represented in the form:

Advantages over matrix form for rotations:
–– coordinate-free
–– composition of rotations:
–– parametrizations (see NFCM)

Thm. I: Every rotation can be expressed in the canonical form:

where                    and  U is even

Note:



Rotor vs. matrix representations for rotations

Matrix representation: ek =α kjσ j α kj = σ j ⋅U(σk )

Rotation  U : σk → ek = U(σk )

Rotor representation:   ek =UσkU
†

Matrix from rotor: α kj = ek ⋅σ j = UσkU
†σ j

� 

αkj ↔ UEstablishes

But it is invariably simpler to use rotors 
without reference to matrices!

Rotor from matrix   (NFCM, p. 286)

Result:  Form 

Normalize to:

� 

ψ = 1+ ekσ k = 1+ αkjσkσ j

U = ψ
ψψ †( )12



Rotational Kinematics

Time dependent rotor U = U(t)

⇒ Rotating frame:  

= rotational velocity (bivector) from dynamics

Rotor eqn. of motion:

⇒ Frame eqn. of motion:

• Rotor eqn. is easier to solve than vector or 3× 3 matrix eqns.
• Quaternions used in aerospace industry
• Rigid body solutions in NFCM, Chap.13

Proofs:



[Ref. NFCM. p. 473]

Classical model of spin:

⇒

Magnetic resonance:

Solution:

Resonance at 

• Produces spiraling spin reversal in time: 
• Can be tuned to γ for different materials



Constant Acceleration without coordinates!

v0t

r

trajectory:

•

•

v
v0

g
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Constant Acceleration:

Vector algebraic model

v0

v0t

v

r

•

•

trajectory

r/t

v
gt

hodograph

Reduces all projectile problems to solving a parallelogram! 



Solving a parallelogram with Geometric Algebra

2r/tv0

v
gt

Problem: Determine 
(a) the range r of a target sighted in a direction     that 

has been hit by a projectile launched with velocity     ;
(b) launching angle for maximum range; 
(c) time of flight 

General case: Elevated target.
• Complicated solution with rectangular coordinates in AJP.
• Much simpler GA solution in NFCM. 



Solving a parallelogram with GA
2r/tv0

v
gt

horizontal ⇒ 2r/t

v0

v
gt

θ
θ



A challenge to the math-science community!

• Research on the design and use of mathematical software is
equally important for instruction and for applications.

• GA is ready to incorporate into the curriculum.

• GA can enhance student understanding and 
accelerate student learning.

• GA provides a unified mathematical language
that is conceptually and computationally superior to 
alternative math systems in every application domain.

Critically examine the following claims:

• GA provides new insight into the structure and interpretation 
of quantum mechanics and relativity theory.



Ø Geometry is the foundation for mathematical modeling in physics
and engineering and for the science of measurement in the real world.

Ø The computationally and conceptually superior methods of analytic
geometry with GA facilitate real world applications. 

Ø Reformulated Euclidean geometry with vector methods emphasizes 
the natural connection to kinematics and rigid body motions. 

Unification and simplification of the high school math-science
curriculum with Geometric Algebra should be centered on geometry
because:

The effect will be to simplify theorems and proofs, and vastly increase
applicability of mathematics to physics and engineering.
Whether or not the high school geometry course can be reformed in 
practice, the course content deserves to be reformed to make it more
useful in physics and engineering applications.

Reform of the high school math-science curriculum can be greatly 
deepened and accelerated by introducing GA modeling software
that is equally attractive to math and science teachers!

A proposal for GA in the curriculum
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Geometric Algebra (GA) software for modeling & simulation
– to unify the math-art-science-technology (MAST) curriculum

Engineering
DesignPhysics

Art & 
Animation

GA modeling &
simulation tools

Algebra
Geometry

Trigonometry

Chemistry Molecular Biology




