Classical Physics with
 SpaceT'ite Algebra
 David Hestenes
 Arizona State University

Santalo 2016

Objectives of this talk

To introduce SpaceTime Algebra (STA) as a unified, coordinate-free mathematical language for classical physics:

- the vector derivative as the fundamental tool of spacetime calculus and demonstrate its effectiveness in electrodynamics
- vector and spinor particle mechanics with internal spin and clock.
- the spacetime split to project 4D invariant physics into 3D geometry of an inertial system.

References

- "Spacetime physics with geometric algebra," Am.J. Phys.

71: 691-704 (2003). <http://geocalc.clas.asu.edu/ >

- Space Time Algebra (Springer: 2015) $2^{\text {nd }}$ Ed.

GA unifies and coordinates other algebraic systems
Multivector:

$$
M=\alpha+\mathbf{a}+i \mathbf{b}+i \beta
$$

Quaternion (spinor): $\quad \psi=\alpha+i \mathbf{b}=\langle M\rangle_{+} \quad$ (even subalgebra)
Cross product: $\quad \mathbf{a} \wedge \mathbf{b}=i(\mathbf{a} \times \mathbf{b})$

$$
\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+i(\mathbf{a} \times \mathbf{b})
$$

Gibb's vector algebra
Matrix algebra is subsidiary to and facilitated by GA
Matrix: $\quad a_{i k}=\mathbf{e}_{i} \cdot \mathbf{a}_{k}$ (involves only the inner product)

Determinant: $\operatorname{det}\left(a_{i k}\right)=\left(\mathbf{e}_{n} \wedge \ldots \wedge \mathbf{e}_{1}\right) \cdot\left(\mathbf{a}_{1} \wedge \ldots \wedge \mathbf{a}_{n}\right)$
Complex numbers: $\quad z=\mathbf{a b}=r e^{\mathbf{i} \theta}$

Differentiation by vectors

Vector product:

$$
\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+i(\mathbf{a} \times \mathbf{b})
$$

\Rightarrow Vector derivative: $\quad \nabla \mathbf{E}=\nabla \cdot \mathbf{E}+\nabla \wedge \mathbf{E}=\nabla \cdot \mathbf{E}+i(\nabla \times \mathbf{E})$
Names: $\operatorname{del}($ grad $)=\operatorname{div}+$ curl
One differential opera
Vector field: $\mathbf{E}=\mathbf{E}(\mathbf{x})$
Electrostatics: $\quad \nabla \mathbf{E}=\rho \quad \Rightarrow \quad \mathbf{E}=\nabla^{-1} \rho$

$$
\Rightarrow
$$

$$
\nabla \cdot \mathbf{E}=\rho \quad \nabla \wedge \mathbf{E}=0
$$

Magnetostatics:

$$
\begin{aligned}
& \nabla \text { tics: } \nabla \mathbf{B}=\frac{1}{c} i \mathbf{J} \\
& \nabla \cdot \mathbf{B}=0 \quad \nabla \times \mathbf{B}=\frac{1}{c} \mathbf{J}
\end{aligned}
$$

Vector derivatives in \mathcal{R}^{n}

Rectangular coordinates: $\quad x^{k}=x^{k}(\mathbf{x})=\boldsymbol{\sigma}_{k} \cdot \mathbf{x} \quad \boldsymbol{\sigma}_{j} \cdot \boldsymbol{\sigma}_{k}=\delta_{j k}$
Position vector: $\quad \mathbf{x}=x^{k} \sigma_{k}=x^{1} \sigma_{1}+x^{2} \sigma_{2}+\ldots+x^{n} \sigma_{n}$
Vector derivative: $\quad \nabla=\partial_{\mathbf{x}}=\sigma_{k} \partial_{k}$

$$
\partial_{k}=\frac{\partial}{\partial x^{k}}=\sigma_{k} \cdot \nabla
$$

Basic derivatives for routine calculations:

$$
\begin{aligned}
& \partial_{k} \mathbf{x}=\sigma_{k} \quad \nabla \mathbf{x}=\sigma_{k} \partial_{k} \mathbf{x}=\sigma_{1} \sigma_{1}+\sigma_{2} \sigma_{2}+\ldots+\sigma_{2} \sigma_{2}=n \\
& \mathbf{r}=\mathbf{r}(\mathbf{x})=\mathbf{x}-\mathbf{x}^{\prime}, \quad r=|\mathbf{r}|=\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \\
& \Rightarrow \nabla \mathbf{r}=n \quad \Rightarrow \quad \nabla \cdot \mathbf{r}=n \quad \nabla \wedge \mathbf{r}=0 \\
& \nabla r=\hat{\mathbf{r}} \quad \nabla(\mathbf{a} \cdot \mathbf{r})=\mathbf{a} \cdot \nabla \mathbf{r}=\mathbf{a} \quad \text { for constant } \mathbf{a} \\
& \nabla \hat{\mathbf{r}}=\frac{2}{r}=\nabla r^{2} ? ? \quad \nabla \times(\mathbf{a} \times \mathbf{r})=\nabla \cdot(\mathbf{a} \wedge \mathbf{r})=(n-1) \mathbf{a} \\
& \nabla r^{k}=k r^{k-2} \mathbf{r} \quad \nabla \frac{\mathbf{r}}{r^{k}}=\frac{n-k-1}{r^{k}}
\end{aligned}
$$

One differential operator $\partial=\partial_{M}$ for all functions $f(M)$!!
Vector derivative: $\nabla=\partial_{x}$

$$
\begin{aligned}
& \text { scalar (field) } \varphi=\varphi(\mathbf{x}): \text { Gradient: } \nabla \varphi=\partial_{x} \varphi \\
& \text { vector (field) } \mathbf{A}=\mathbf{A}(\mathbf{x}): \quad \text { Grad: } \nabla \mathbf{A}=\nabla \cdot \mathbf{A}+\nabla \wedge \mathbf{A} \\
& \text { Divergence: } \nabla \cdot \mathbf{A} \\
& \text { Curl: } \nabla \wedge \mathbf{A}=i(\nabla \times \mathbf{A}) \\
& \text { multivector } \mathbf{F}=\mathbf{F}(\mathbf{x}): \quad \text { Grad: } \nabla \mathbf{F}=\nabla \cdot \mathbf{F}+\nabla \wedge \mathbf{F} \\
& \text { Divergence: } \nabla \cdot \mathbf{F} \\
& \text { Curl: } \nabla \wedge \mathbf{F}
\end{aligned}
$$

Scalar derivative: $\partial_{t}=\frac{\partial}{\partial t}$
Multivector derivative: ∂_{M}
Chain Rule

Electromagnetic Fields

$$
\begin{array}{lr}
\text { One Electromagnetic Field!: } & F=\mathbf{E}+i \mathbf{B} \\
\text { One Maxwell' s Equation: } & \left(\frac{1}{c} \partial_{t}+\nabla\right) F=\rho-\frac{1}{c} \mathbf{J} \\
\qquad \frac{1}{c} \partial_{t} \mathbf{E}+i \frac{1}{c} \partial_{t} \mathbf{B}+\nabla \mathbf{E}+i \nabla \mathbf{B}=\rho-\frac{1}{c} \mathbf{J}
\end{array}
$$

Use $\nabla \mathbf{E}=\nabla \cdot \mathbf{E}+i(\nabla \times \mathbf{E})$ and separate k-vector parts:

1 Scalar

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =\rho \\
\frac{1}{c} \partial_{t} \mathbf{E}+i^{2} \nabla \times \mathbf{B} & =-\frac{1}{c} \mathbf{J} \\
i \frac{1}{c} \partial_{t} \mathbf{B}+i \nabla \times \mathbf{E} & =0 \\
i \nabla \cdot \mathbf{B} & =0
\end{aligned}
$$

3 Vector
3 Bivector
1 Pseudoscalar

Energy-momentum density:

$$
\frac{1}{2} F F^{\dagger}=\frac{1}{2}(\mathbf{E}+i \mathbf{B})(\mathbf{E}-i \mathbf{B})=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)+\mathbf{E} \times \mathbf{B}
$$

Invariants: $\quad F^{2}=(\mathbf{E}+i \mathbf{B})^{2}=\mathbf{E}^{2}-\mathbf{B}^{2}+2 i(\mathbf{E} \cdot \mathbf{B})$

Redundancy in conventional mathematics

Fund. The of calculus:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Green's Thy:

$$
\iint\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial x}\right) d x d y=\oint(P d x+Q d y)
$$

Stokes' Tho:

$$
\int \mathbf{n} \cdot(\nabla \times \mathbf{B}) d A=\oint \mathbf{B} \cdot d \mathbf{x}
$$

Gauss' The:

$$
\int \nabla \cdot \mathbf{E} d V=\oint \mathbf{E} \cdot \mathbf{n} d A
$$

Generalized Stokes' Thm:

$$
\int d \wedge \omega=\oint \omega
$$

Unification in a single
Fundamental Theorem:

$$
\int d^{k} \mathbf{x} \cdot \nabla F=\oint d^{k-1} \mathbf{x} F
$$

k-vector directed measure: $\quad d^{k} \mathbf{x}=d_{1} \mathbf{x} \wedge d_{2} \mathbf{x} \wedge \ldots \wedge d_{k} \mathbf{x}$
Generalized
Cauchy Tho:

$$
\nabla F=0 \quad \Leftrightarrow \quad \oint d^{n} \mathbf{x} F=0
$$

Antiderivatives: $\nabla F=s \quad \Rightarrow \quad F=\nabla^{-1} s$

$F=\mathbf{E}+i \mathbf{B}$ solves electrostatic and magnetostatic problems

$$
\begin{array}{ccc}
\mathbf{r}=\mathbf{r}(\mathbf{x})=\mathbf{x}-\mathbf{x}^{\prime}, \quad r=|\mathbf{r}|=\left|\mathbf{x}-\mathbf{x}^{\prime}\right| & \text { solid angle } & \text { pseudoscalar } \\
\nabla \frac{\mathbf{r}}{r^{n}}=\delta^{n}(r) \Omega_{n} & \Omega_{2}=2 \pi & I_{2}=\mathbf{i}=\sigma_{2} \sigma_{1} \\
& \Omega_{3}=4 \pi & I_{3}=i=\sigma_{1} \sigma_{2} \sigma_{3}
\end{array}
$$

$$
\mathbf{E}(\mathbf{x})=\frac{1}{\Omega_{n}}\left\{\int_{\mathcal{R}} \frac{\mathbf{r}}{r^{n}} d^{n} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)+\int_{\partial \mathcal{R}} \frac{\mathbf{r}}{r^{n}} d^{n-1} x^{\prime} \mathbf{n E}\left(\mathbf{x}^{\prime}\right)\right\}
$$

$$
\begin{aligned}
& F(\mathbf{x})=\int_{\mathcal{R}} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d^{n} \mathbf{x}^{\prime} s\left(\mathbf{x}^{\prime}\right)+\int_{\partial \mathcal{R}} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d^{n-1} \mathbf{x}^{\prime} F\left(\mathbf{x}^{\prime}\right) \\
& \nabla G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\delta^{n}\left(\mathbf{x}-\mathbf{x}^{\prime}\right) I_{n}^{-1} \\
& \begin{aligned}
d^{n} \mathbf{x} & =I_{n} d^{n} x \\
d^{n-1} \mathbf{x} & =I_{n} \mathbf{n} d^{n-1} x
\end{aligned}
\end{aligned}
$$

$\operatorname{dim} \mathcal{R}=n=3:$

$$
\mathbf{E}(\mathbf{x})=\int_{\mathcal{R}} \frac{d^{3} x^{\prime}}{4 \pi} \frac{\mathbf{x}-\mathbf{x}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} \rho\left(\mathbf{x}^{\prime}\right)+\int_{\partial \mathcal{R}} \frac{d^{2} x^{\prime}}{4 \pi} \frac{\mathbf{x}-\mathbf{x}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{\prime}} \mathbf{n E}\left(\mathbf{x}^{\prime}\right)
$$

$$
\begin{gathered}
\operatorname{dim} \mathcal{R}=n=2: \quad d \mathbf{x}^{\prime}=\mathbf{i n} d x^{\prime} \\
\mathbf{E}(\mathbf{x})=\frac{1}{2 \pi} \int_{\mathcal{R}} d^{2} x^{\prime} \frac{1}{\mathbf{x}-\mathbf{x}^{\prime}} \rho\left(\mathbf{x}^{\prime}\right)+\frac{1}{2 \pi \mathbf{i}} \int_{\partial \mathcal{R}} \frac{1}{\mathbf{x}-\mathbf{x}^{\prime}} d \mathbf{x}^{\prime} \mathbf{E}\left(\mathbf{x}^{\prime}\right)
\end{gathered}
$$

Generalised

$$
\text { Complex variable: } z=\mathbf{a x} \quad d \mathbf{x}=\mathbf{a} d z
$$

Complex variable: $z=\mathbf{a x} \quad d \mathbf{x}=\mathbf{a} d z$
Cauchy
Integral
Formula

$$
F(z)=\frac{1}{2 \pi} \int_{\mathcal{R}} d^{2} x^{\prime} \frac{1}{z-z^{\prime}} \rho\left(z^{\prime}\right)+\frac{1}{2 \pi \mathbf{i}} \int_{\partial \mathcal{R}} \frac{d z^{\prime}}{z-z^{\prime}} F\left(z^{\prime}\right)
$$

EM Plane Waves: Solutions of the form $F(\mathbf{x}, t)=F(s)$

$$
s=t-\frac{\mathbf{x} \cdot \mathbf{n}}{c} \text { constant on moving plane } \mathbf{x}=\mathbf{x}(\mathrm{t})
$$

$$
\frac{d s}{d t}=1-\frac{\dot{\mathbf{x}} \cdot \mathbf{n}}{c}=0 \quad \rightarrow \quad \dot{\mathbf{x}} \cdot \mathbf{n}=\mathbf{v n}=c \quad \rightarrow \quad \mathbf{v}=c \mathbf{n}
$$

$$
\left(\frac{1}{c} \partial_{t}+\nabla\right) F=0=(1+\mathbf{n}) \frac{d F}{d s} \quad \text { Shock wave! }
$$

Monochromatic: $\quad F(\mathbf{x}, t)=f e^{i(\omega t-\mathbf{k} \cdot \mathbf{x})}$

$\Rightarrow\left(\frac{\omega}{c}-\mathbf{k}\right) F i=0 \Rightarrow\left(\frac{\omega}{c}+\mathbf{k}\right)\left(\frac{\omega}{c}-\mathbf{k}\right) F=\left(\frac{\omega^{2}}{c^{2}}-\mathbf{k}^{2}\right) F=0$
$\Rightarrow \quad \mathbf{n} F=F \quad F \neq 0 \Rightarrow|\mathbf{k}|=\frac{\omega}{c}, \omega>0$
$\mathbf{n}(\mathbf{E}+i \mathbf{B})=\mathbf{E}+i \mathbf{B} \Rightarrow \mathbf{n E}=i \mathbf{B}$
$F=\mathbf{E}+i \mathbf{B}=(1+\mathbf{n}) \mathbf{E}=\mathbf{E}(1-\mathbf{n})=\mathbf{E}_{0}(1-\mathbf{n}) e^{i \omega s}$

Plane Waves: $\quad F=F(s)=F\left(t-\mathbf{x} \cdot \hat{\mathbf{k}} c^{-1}\right)$

$$
\begin{aligned}
F & =\mathbf{E}+i \mathbf{B}=(1+\mathbf{n}) \mathbf{E}=\mathbf{E}(1-\mathbf{n}) \\
F^{2} & =\mathbf{E}^{2}-\mathbf{B}^{2}+2 i(\mathbf{E} \cdot \mathbf{B})=0
\end{aligned}
$$

Monochromatic

Wave: $\quad F(\mathbf{x}, t)=f e^{ \pm i(\omega t-\mathbf{k} \cdot \mathbf{x})}=\left(\mathbf{E}_{0}+i \mathbf{B}_{0}\right) e^{ \pm i \mathbf{n}(\omega t-\mathbf{k} \cdot \mathbf{x})}$
Wave packet: $\quad F=f z(s), \quad f=(1+\mathbf{n}) \mathbf{e}, \quad|f|^{2}=f^{\dagger} f=2$

$$
\begin{gathered}
z(s)=\int_{-\infty}^{\infty} d \omega \alpha(\omega) e^{i \omega s}=\int_{0}^{\infty} d \omega\left[\alpha_{+}(\omega) e^{i \omega s}+\alpha_{-}(\omega) e^{-i \omega s}\right] \\
\alpha_{ \pm}(\omega)=\alpha(\pm|\omega|) \quad \text { Sign of } \omega=\text { helicity }
\end{gathered}
$$

Energy density: $\frac{1}{2}\left\langle F F^{\dagger}\right\rangle=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)=|z|^{2}$
$\Rightarrow z(s)$ describes the energy, frequency and polarization structure of the plane wave

Electromagnetic Fields in Continuous Media

$$
\left(\frac{1}{c} \partial_{t}+\nabla\right)(\mathbf{E}+i \mathbf{B})=\rho-\frac{1}{c} \mathbf{J}=\rho_{\mathrm{f}}+\rho_{\mathrm{b}}-\frac{1}{c}\left(\mathbf{J}_{\mathrm{f}}+\mathbf{J}_{\mathrm{b}}\right)
$$

Bound charge density: $\rho_{\mathrm{b}}=-\nabla \cdot \mathbf{P}$
Bound current: $\quad \mathbf{J}_{\mathrm{b}}=\partial_{t} \mathbf{P}+c \nabla \times \mathbf{M}$

Free charge density ρ_{f}
Free charge density \mathbf{J}_{f}

Constitutive equations for linear, homogeneous, isotropic media:

$$
\begin{array}{ll}
\mathbf{P}=(\varepsilon-1) \mathbf{E} & \varepsilon=\text { permitivity (dielectric constant) } \\
\mathbf{M}=\left(1-\mu^{-1}\right) \mathbf{B} & \mu=\text { (magnetic) permeability } \\
\mathbf{J}_{\mathrm{f}}=\sigma \mathbf{E} & \sigma=\text { conductivity (Ohm' s law) }
\end{array}
$$

Multiply even part of Max. eqn. by $\sqrt{\frac{\mu}{\varepsilon}}$ to get

$$
\left(\frac{\sqrt{\mu \varepsilon}}{c} \partial_{t}+\nabla\right)\left(\mathbf{E}+\frac{i}{\sqrt{\mu \varepsilon}} \mathbf{B}\right)=-\frac{\sigma}{c} \sqrt{\frac{\mu}{\varepsilon}} \mathbf{E} \quad \begin{gathered}
\text { Gaussian } \\
\text { Units }
\end{gathered}
$$

Or:

$$
\left(\frac{1}{v} \partial_{t}+\nabla\right) G=0
$$

$$
G=\mathbf{E}+\frac{i}{n} \mathbf{B} \quad n=\sqrt{\mu \varepsilon}=\frac{c}{v}
$$

What is free space?

Maxwell's equation for a homogeneous, isotropic medium

$$
\begin{aligned}
& \varepsilon=\text { permitivity (dielectric constant) } \\
& \mu=(\text { magnetic) permeability }
\end{aligned} \quad \mathbf{G}=\mathbf{E}+\frac{\boldsymbol{i}}{\sqrt{\mu \varepsilon}} \mathbf{B}
$$

$$
\begin{array}{rlr}
\left(\sqrt{\mu \varepsilon} \partial_{t}-\nabla\right) \mathrm{G}=0 & \text { Maxwell's Equation } \\
\left(\sqrt{\mu \varepsilon} \partial_{t}+\nabla\right) \times\left(\sqrt{\mu \varepsilon} \partial_{t}-\nabla\right) \mathrm{G}=0 & \\
=\left(\mu \varepsilon \partial_{t}^{2}-\nabla^{2}\right) \mathrm{G}=0 & \\
& \left(c^{-2} \partial_{t}^{2}-\nabla^{2}\right) \mathrm{G}=0 & \text { Wave Equation } \\
\hline
\end{array}
$$

$\mathrm{c}=1 / \sqrt{\mu \varepsilon}=$ velocity of light in the medium $=$ free space
D'Alembertian: $\square^{2}=c^{-2} \partial_{t}^{2}-\nabla^{2}$ Wave operator Invariant under Lorentz transformations
\Rightarrow Theory of relativity But $\sqrt{\frac{\mu}{\varepsilon}}=\rho(x)=$??

SpaceTime Algebra (STA): $\mathcal{R}_{1,3}=\mathcal{G}\left(\mathcal{R}^{1,3}\right)$
Generated by a frame of vectors $\left\{\gamma_{\mu}\right\}$ STA $\xrightarrow[\text { rep }]{\text { matrix }}$ (Real) Dirac Algebra
Product: $\quad \gamma_{\mu} \gamma_{v}=\gamma_{\mu} \cdot \gamma_{v}+\gamma_{\mu} \wedge \gamma_{v}$

Metric: $\quad g_{\mu \nu} \equiv \gamma_{\mu} \cdot \gamma_{v}=\frac{1}{2}\left(\gamma_{\mu} \gamma_{v}+\gamma_{v} \gamma_{\mu}\right) \quad \gamma_{0}^{2}=1$
STA basis: $1, \quad \gamma_{\mu}, \quad \gamma_{\mu} \wedge \gamma_{\nu}, \quad i \gamma_{\mu}, \quad i=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \quad \gamma_{k}^{2}=-1$ scalar, vector, bivector, pseudovector, pseudoscalar
Vector: $a=a^{\mu} \gamma_{\mu} \quad$ Bivector: $F=\frac{1}{2} F^{\nu \mu} \gamma_{\mu} \wedge \gamma_{v}$
Unit pseudoscalar: i

$$
i^{2}=-1, \quad i a=-a i
$$

Multivector: $M=\alpha+a+F+i b+i \beta \quad \gamma_{0} i=-i \gamma_{0}=\gamma_{1} \gamma_{2} \gamma_{3}$

$$
1+4+6+4+1=16=2^{4}
$$

Dual:

$$
i M=i \alpha+i a+i F-b-\beta
$$

SpaceTime Algebra (STA):

$$
\text { STA } \xrightarrow[\text { rep }]{\text { matrix }} \text { (Real) Dirac Algebra }
$$

Generated by a frame of vectors: $\left\{\gamma_{\mu}\right\}$
Geometric product: $\gamma_{0}{ }^{2}=1, \quad \gamma_{k}{ }^{2}=-1 \quad(k=1,2,3)$

bivector: $\gamma_{\mu} \gamma_{v}=-\gamma_{v} \gamma_{\mu} \equiv \gamma_{\mu} \wedge \gamma_{v} \quad(\mu \neq v)$

$$
p=p^{\mu} \gamma_{\mu}=m v \quad p^{2}=m^{2} \quad F=\frac{1}{2} F^{v \mu} \gamma_{\mu} \wedge \gamma_{v}
$$

SpaceTime Split: Inertial system determined by observer γ_{0}
observer history
($\mathrm{c}=1$)

Spatial vector frame: $\left\{\boldsymbol{\sigma}_{k}=\gamma_{k} \gamma_{0}\right\}$
Unit pseudoscallar: $\quad i=\sigma_{1} \sigma_{2} \sigma_{3}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$

$$
p \gamma_{0}=\left(E \gamma_{0}+p^{k} \gamma_{k}\right) \gamma_{0}=E+\mathbf{p}
$$

$$
F=F^{0 k} \boldsymbol{\sigma}_{k}+\frac{1}{2} F^{j k} \boldsymbol{\sigma}_{k} \boldsymbol{\sigma}_{j}=\mathbf{E}+i \mathbf{B} \quad i^{2}=-1
$$

[D. Hestenes (2003), Am. J. Phys. 71: 691-714]

Geometric Calculus \& Electrodynamics

Spacetime point: $\quad x=x^{\mu} \gamma_{\mu}$
Derivative: $\quad \nabla=\partial_{x}=\gamma^{\mu} \partial_{\mu}$
EM field: $\quad F=F(x)=\frac{1}{2} F^{v \mu} \gamma_{\mu} \wedge \gamma_{v}$
Current: $\quad J=J(x)=J^{\mu} \gamma_{\mu}$
Maxwell' sequation: $\nabla F=J$

$$
\begin{aligned}
& \nabla=\partial_{\mathbf{x}} \\
& \nabla \mathbf{E}=\nabla \cdot \mathbf{E}+\nabla \wedge \mathbf{E}=\nabla \cdot \mathbf{E}+i \nabla \times \mathbf{E}
\end{aligned}
$$

Coordinates: $x^{\mu}=x \cdot \gamma^{\mu}$

$$
\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\gamma_{\mu} \cdot \partial
$$

ST split: $\quad F=\mathbf{E}+i \mathbf{B}$

$$
\gamma_{0} J=\rho-\mathbf{J}
$$

$$
\gamma_{0} \nabla F=\left(\partial_{t}+\partial_{\mathbf{x}}\right)(\mathbf{E}+i \mathbf{B})=\rho-\mathbf{J}
$$

$$
\nabla \cdot \mathbf{E}=\rho
$$

$$
\partial_{t} \mathbf{E}+i(i \nabla \times \mathbf{B})=-\mathbf{J}
$$

$$
\nabla \wedge \mathbf{E}+i \partial_{t} \mathbf{B}=0
$$

$$
i(\nabla \cdot \mathbf{B})=0
$$

Lorentz Force: $\quad m \dot{v}=q F \cdot v \quad v \gamma_{0}=v \cdot \gamma_{0}\left(1+v \wedge \gamma_{0} / v \cdot \gamma_{0}\right)=\gamma(1+\mathbf{v})$
ST split: $\quad m \dot{\dot{\gamma}}=q \mathbf{E} \cdot \mathbf{v}$
$m \dot{\mathbf{v}}=q \gamma(\mathbf{E}+\mathbf{v} \times \mathbf{B})$
($c=1$)

Summary for rotations in 2D, 3D and beyond
Thm. I: Every rotation can be expressed in the canonical form:

$$
\begin{array}{ll}
\mathbf{x} \rightarrow & \mathbf{x}^{\prime}=U \mathbf{x} U^{\dagger} \quad \text { where } U U^{\dagger}=1 \text { and } U \text { is even } \\
\text { Note: } & \left(\mathbf{x}^{\prime}\right)^{2}=U \mathbf{x} U^{\dagger} U \mathbf{x} U^{\dagger}=U \mathbf{x}^{2} U^{\dagger}=U U^{\dagger} \mathbf{x}^{2}=\mathbf{x}^{2}
\end{array}
$$

Thm. II: Every rotation in 3D can be expressed as product of two reflections:

$$
\left.\begin{array}{c}
U=\mathbf{b a} \\
U^{\dagger}=\mathbf{a b}
\end{array}\right\} \quad U U^{\dagger}=\mathbf{b a a b}=\mathbf{a}^{2}=1
$$

Generalizations:
III. Thm I applies to Lorentz transformations of spacetime
IV. Cartan-Dieudonné Thm (Lipschitz, 1880): Every orthogonal transformation can be represented in the form: $U=\mathbf{a}_{n} \ldots \mathbf{a}_{2} \mathbf{a}_{1}$
Advantages over matrix form for rotations:
— coordinate-free

- composition of rotations:
— parametrizations (see NFCM)

$$
U_{2} U_{1}=U_{3}
$$

Lorentz rotations without matrices or coordinates

Rotation of a frame: $\quad \gamma_{\mu} \rightarrow e_{\mu}=R \gamma_{\mu} \tilde{R}=a_{\mu}^{\eta} \gamma_{\eta}$
Matrix representation: $a_{\mu}^{\eta}=\gamma^{\eta} \cdot e_{\mu}=\left\langle\gamma^{\eta} R \gamma_{\mu} \tilde{R}\right\rangle$
Spin representation: $\quad R= \pm \frac{A}{(\tilde{A} A)^{1 / 2}} \quad A \equiv e_{\mu} \gamma^{\mu}=a_{\mu}^{\eta} \gamma_{\eta} \gamma^{\mu}$
Rotor R defined by: $R \tilde{R}=1 \quad R i=i R \quad$ or: $\quad R=e^{\frac{1}{2} B} \quad \tilde{R}=e^{-\frac{1}{2} B}$
Orthogonality: $\quad e_{\mu} \cdot e_{v}=\left\langle R \gamma_{\mu} \tilde{R} R \gamma_{v} \tilde{R}\right\rangle=\left\langle R \gamma_{\mu} \gamma_{v} \tilde{R}\right\rangle=\gamma_{\mu} \cdot \gamma_{v}$ SpaceTime Split: $\quad R=L U$

Boost: $\quad e_{0}=R \gamma_{0} \tilde{R}=L \gamma_{0} \tilde{L}=L^{2} \gamma_{0}$

$$
L=\left(e_{0} \gamma_{0}\right)^{1 / 2}
$$

Spatial rotation: $U \gamma_{0} \tilde{U}=\gamma_{0}$

$$
\Rightarrow \quad \mathbf{e}_{k} \equiv U \boldsymbol{\sigma}_{k} \tilde{U}=U \gamma_{k} \gamma_{0} \tilde{U}=U \gamma_{k} \tilde{U} \gamma_{0}=\tilde{L} e_{k} e_{0} L
$$

SpaceTime-splits and particle kinematics

Inertial observer defined by a unit timelike vector: γ_{0} ST-split of a spacetime point x :

$$
\gamma_{0}^{2}=1
$$

$$
\begin{aligned}
& x \gamma_{0}=x \cdot \gamma_{0}+x \wedge \gamma_{0} \\
& \begin{array}{l}
x \gamma_{0}=c t+\mathbf{x} \\
\gamma_{0} x=c t-\mathbf{x}
\end{array} \Leftrightarrow \quad c t=x \cdot \gamma_{0} \\
& \quad x^{2}=\left(x \gamma_{0}\right)\left(\gamma_{0} x\right)=(c t+\mathbf{x})(c t-\mathbf{x})=c^{2} t^{2}-\mathbf{x}^{2}
\end{aligned}
$$

Particle history: $\quad x=x(\tau) \quad|d x|=d \tau \quad \mathrm{c}=1$
proper velocity: $\quad v=\dot{x}=\frac{d x}{d \tau}$
ST-split: $v \gamma_{0}=v_{0}(1+\mathbf{v}) \Rightarrow v^{2}=1=v_{0}{ }^{2}\left(1-\mathbf{v}^{2}\right)$
time dilation factor: $v_{0}=v \cdot \gamma_{0}=\frac{d t}{d \tau}=\left(1-\mathbf{v}^{2}\right)^{-\frac{1}{2}}$
relative velocity: $\quad \mathbf{v}=\frac{d \mathbf{x}}{d t}=\frac{d \tau}{d t} \frac{d \mathbf{x}}{d \tau}=\frac{v \wedge \gamma_{0}}{v_{0}}$

Relativistic Physics

invariant vectors vs. covariant paravectors
$\mathrm{x} \rightarrow \mathrm{x} \gamma_{0}=\mathrm{x} \cdot \gamma_{0}+\mathrm{x} \wedge \gamma_{0}=\mathrm{ct}+\mathbf{x} \quad \Leftrightarrow \quad \mathrm{X}=\mathrm{ct}+\mathbf{x}$
Recommended exercise: Undo the original paravector treatment of relativistic mechanics, written in 1980, published in 1999 in NFCM (chapter 9 in 2nd Ed.)

The chief advocate: W.E. Baylis.
Geometry of Paravector Space with Applications to Relativistic Physics (Kluwer: 2004)

Electrodynamics (W.E. Baylis, Birkhäuser, 1999)
Exercise: Translate from covariant to invariant

Spinor particle dynamics

$v^{2}=1 \Rightarrow$ particle velocity $v=\dot{x}=v(\tau)$ can only rotate as the particle traverses its history $x=x(\tau)$

$$
\Rightarrow \quad v=R \gamma_{0} \tilde{R} \quad \text { Rotor: } R=R(\tau)
$$

$\begin{aligned} & \text { Rotor } \\ & \text { eqn. of } \\ & \text { motion: }\end{aligned} \quad \frac{d R}{d \tau}=\dot{R}=\frac{1}{2} \Omega R$
$\Leftrightarrow \Omega=2 \dot{R} \tilde{R}=-2 R \dot{\tilde{R}}$
$\Omega=$ rotational velocity

$$
\frac{d v}{d \tau}=\dot{v}=\dot{R} \gamma_{0} \tilde{R}+R \gamma_{0} \dot{\tilde{R}}=\frac{1}{2}(\Omega v+v \Omega) \quad \Rightarrow \quad \dot{v}=\Omega \cdot v
$$

What does the rotor equation buy us?

- $\Omega=\frac{q}{m} F \quad \Rightarrow \quad m \dot{v}=q F \cdot v \quad$ Lorentz force!
observer history
- $\dot{\Omega}=0 \quad \Rightarrow \quad$ general solution: $R=e^{\frac{1}{2} \Omega \tau} R_{0}$
- Comoving frame: $e_{0}=R \gamma_{0} \tilde{R}=v=\dot{x} \quad e_{\mu}=R \gamma_{\mu} \tilde{R} \Rightarrow \dot{e}_{\mu}=\Omega \cdot e_{\mu}$

$$
\text { Spin: } s=\frac{\hbar}{2} e_{3}=\frac{\hbar}{2} R \gamma_{3} \tilde{R} \quad \Rightarrow \quad \dot{s}=\frac{q}{m} F \cdot s \quad \mathrm{~g}=2
$$

Classical limit of Dirac equation!
Real spinors are natural \& useful in both classical \& quantum theory!

Implications of Real Dirac Theory: the geometry of electron motion with de Broglie's electron clock in quantum mechanics!
Dirac equation determines a congruence of streamlines, each a potential particle history $x=x(\tau)$

$$
\text { with particle velocity } \dot{x}=v(\tau)=R \gamma_{0} \tilde{R}
$$

Spinning frame picture of electron motion

Dirac wave function $\psi=\left(\rho e^{i \beta}\right)^{\frac{1}{2}} R$ determines
Rotor: $R=R(\tau)=R[x(\tau)]=R_{0} e^{-\frac{1}{2} \varphi \gamma_{2} \gamma_{1}}$
comoving frame: $e_{\mu}=R \gamma_{\mu} \tilde{R}$ phase $\varphi / 2$
velocity: $e_{0}=R \gamma_{0} \tilde{R}=v$
Spin: $S=\frac{\hbar}{2} e_{2} e_{1}$

$$
e_{2} e_{1}=R \gamma_{2} \gamma_{1} \tilde{R}=R_{0} \gamma_{2} \gamma_{1} \tilde{R}_{0}
$$

Plane wave solution: $R=R_{0} e^{-\frac{1}{2} \varphi \gamma_{2} \gamma_{1}}=R_{0} e^{-\frac{p \cdot x}{\hbar} \gamma_{2} \gamma_{1}}$

$$
p=m_{e} c^{2} v \quad \Rightarrow \quad \frac{1}{2} \varphi=\frac{p \cdot x}{\hbar}=\frac{m_{e} c^{2}}{\hbar} v \cdot x=\omega_{B} \tau
$$

$$
\begin{gathered}
\tau=\tau(x)=v \cdot x \\
\omega_{B}=\frac{m_{e} c^{2}}{\hbar}=\frac{1}{2} \frac{d \varphi}{d \tau}
\end{gathered}
$$

Summary and comparison

Field
strength:
Maxwell's
Equations:
Tensor form STA

$$
F_{\mu v}=\partial_{\mu} A_{v}-\partial_{v} A_{\mu} \quad F=\nabla \wedge A \quad F=\mathbf{E}+i \mathbf{B} \quad \text { (ST-split) }
$$

Lorentz
force:

$$
\begin{array}{cc}
\partial_{\mu} F^{\mu \nu}=J^{v} & \nabla \cdot F=J \\
\partial_{[\alpha} F_{\mu v]}=0 & \nabla \wedge F=0 \\
m \frac{d v^{\mu}}{d \tau}=q F^{\mu v} v_{v} & m \dot{v}=q F \cdot v
\end{array}
$$

coordinate-dependent coordinate-free

Spinors: None! $\quad e_{\mu}=R \gamma_{\mu} \tilde{R} \quad \dot{R}=\frac{1}{2} \Omega R \quad$| rigid body |
| :--- |
| precession! |

Quantum Dirac matrices Real spinors natural \& useful in both Mechanics: superimposed classical \& quantum theory!
General •General covariance • Displacement gauge invariance Relativity: • Equivalence principle •Rotation gauge covariance

Current Status of GA \& STA

Mathematical scope

— greater than any other system!
Linear algebra
Multilinear algebra
Differential geometry
Hypercomplex function theory (unifying and generalizing real and complex analysis)
Lie groups as spin groups
Crystallographic group theory
Projective geometry
Computational geometry distance geometry line geometry \& screw theory

Physics scope

- covers all major branches!

Outline and References

[http:\\modelingnts.la.asu.edu](http:%5C%5Cmodelingnts.la.asu.edu) http://www.mrao.cam.ac.uk
I. Intro to GA and non-relativistic applications

- Oersted Medal Lecture 2002 (Web and AJP)
- NFCM (Kluwer, 2nd Ed.1999)
- New Foundationsfor Mathematical Physics (Web)

1. Synopsis of GA 2. Geometric Calculus
II. Relativistic Physics (covariant formulation)

- NFCM (chapter 9 in 2nd Ed.)
- Electrodynamics (W.E. Baylis, Birkhäuser, 1999)
III. Spacetime Physics (invariant formulation)
- Spacetime Physics with Geometric Algebra (Web \& AJP)
- Doran, Lasenby, Gull, Somaroo \& Challinor,

Spacetime Algebra and Electron Physics (Web)
Lasenby \& Doran, Geometric Algebrafor Physicists (Cambridge: The University Press, 2002).

THE END

