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What is Geometric Algebra?
First answer: a universal number system for all of mathematics!

An extension of the real number system to incorporate the
geometric concepts of direction, dimension and orientation

Naming the numbers:   Clifford numbers   or   la rue de Bourbaki?

Clifford followed Grassmann in selecting descriptive names:

Can define by introduce anticommuting units (vectors):

j, k =  –m, . . . ,–1,1, 2, … n

signature = sign of index k

associative and distributive rules

(Grassmann)

(Clifford)

Directed numbers or multivectors: vectors, bivectors,…
versors, rotors, spinors

Arithmetic constructs:    vector space algebra
grandmother algebra  (quantum field theory)(Dirac, Jordan)



What is Geometric Algebra?
Second answer: a universal geometric language!

Geometric interpretation elevates the mathematics of 
from mere arithmetic to the status of a language!!

Hermann Grassmann’s contributions:

• Abstraction of algebraic form 
from geometric interpretation

•  Concepts of vector and k-vector
with geometric interpretations

• System of universal operations on k-vectors
O Progressive (outer) product (step raising)
O Regressive product (step lowering)
O Inner product
O Duality

• System of identities among operations
(repeatedly rediscovered in various forms)

• Unsuccessful algebra of points   ⟶ (Conformal GA)



William Kingdon Clifford –– intellectual exemplar
Deeply appreciated and freely acknowledged work of others:

Grassmann, Hamilton, Riemann
Modestly assimilated it into his own work
A model of self-confidence without arrogance

Clifford’s contribution to Geometric Algebra:
• Essentially completed Grassmann’s number system
• Reduced all of Grassmann’s operations to a

single geometric product
• Combined k-vectors into multivectors of mixed step (grade).

Overlooked the significance of mixed signature and null vectors
–– opportunity to incorporate his biquaternions into GA

Subsequently, Clifford algebra was developed abstractly
with little reference to its geometric roots



The grammar of Geometric Algebra:
An arithmetic of directed numbers encoding the 

geometric concepts of magnitude, direction, sense & dimension

• To define the grammar, begin with
≡ Real vector space of dimension n = p + q

signature: positive, negative

Vector addition and scalar multiplication do not fully 
encode the geometric content of the vector concept.

• To encode the geometric concept of relative direction, we define 
an associative geometric product ab of vectors a, b, . . . with  

is the signature of a

A linear space with

space of
k–vectors

• With the geometric product the vector space generates the

Geometric Algebra
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Linear space structure 
Of Geometric Algebra

Duality:



Quadratic forms vs. contractions
Claim: Linear forms on a vector space can be represented by 
inner products in a geometric algebra without assuming a metric.

a real vector space spanned by 
Dual space of linear forms spanned by

And defined by                                   or

The associative outer product 
generates the Grassmann algebra :

Likewise, the dual space generates the dual algebra

has geometric product

Now define

Assume the null metric so

The algebra of fermion creation and annihilation operators!!



Euclidean

Anti-Euclidean

Null
Space

Dual
Space

Mother algebra

Covers all!

Euclidean basis:
Anti-Euclidean basis:

All signatures in subalgebras

[Ref. Doran et. al., Lie Groups as Spin Groups]

Ideal arena for linear algebra! All dimensions!



Universal Geometric Algebra

generates Real GA:
Geometric product: nondegenerate signature {r, s}
Real Vector Space: dimension r+s = n

Outer product:Inner product:

⇒

k-blade: ⇒ k-vector

Graded algebra:

Reverse:

Unit pseudoscalar:

Dual: Thm:



⇒ Cartan-Dieudonné Thm (Lipschitz, 1880):

[Doran et. al. (1993) “Lie Groups as Spin Groups”]⇒ Nearly all groups

C(r, s) ≅ O(r+1, s+1)Conformal group:In particular:
Conformal GA:Hence define:

For example:      All the classical groups!

• Reflection in a hyperplane in       with normal     : 

Advantages over matrix representations:

• Simple composition laws:
• Reducible to multiplication and reflection by vectors:

• Coordinate-free

Group Theory with Geometric Algebra

Pin(r, s) Spin(r, s) =Groups:

Versor (of order k):

odd/even parity

O(r, s) = SO(r, s) Spin(r, s)on vectors:



From
GEOMETRIC ALGEBRA

to 
GEOMETRIC CALCULUS



–– a set on which differential and integral calculus is well-defined!

What is a manifold? of dimension m

–– standard definition requires covering by charts of local coordinates.  
• Calculus done indirectly by local mapping to
• Proofs required to establish results independent of coordinates.

Geometric Calculus defines a manifold as any set
isomorphic to a vector manifold

Vector manifold is a set of vectors in GA that generates
at each point x a tangent space with pseudoscalar Im(x)

Advantages:
• Manifestly coordinate-free
• Calculus done directly with algebraic operations on points
• Geometry completely determined by derivatives of Im(x).

Remark: It is unnecessary to assume that          is embedded in a
vector space, though embedding theorems can be proved.



How GA facilitates use of coordinates on a vector manifold

Patch of           parametrized by coordinates: 
Inverse mapping by coordinate functions:

With pseudoscalar: 

Reciprocal frame implicitly defined by
with solution:

⇒

Vector derivative:

Problem: How define vector derivative without coordinates?

Coordinate frame defined by

x•



Directed integrals in GA

• x

M
∂MF = F(x) = multivector-valued function on 

= directed measure on

In terms of coordinates:

where (no sum)
x•

= Volume element

expressed as a standard multiple integral

Directed 
Integral



Fundamental Theorem of Geometric Calculus

For = vector space,
∇ =  vector derivative on

=  vector derivative on

⇒

tangential derivative:

Inspires coordinate-free definition for the

=   derivative by x on

µ

µµ



Theory of differential forms generalized by GA

=     multivector-valued k-form
=     linear function of k-vector             at each point x.
e.g.: =   k-vector valued k-form

Exterior differentialof k-form L: 

Fundamental Theorem:
(most general form)

Special cases:

Advantages over standard theory:
• Cauchy Theorem:
• Cauchy Integral Theorem



•Applies to all dimensions
• Coordinate-free
• Simplifies Fund. Thm.
• Generalizes definition 

Advantages of the vector derivative:

or

Applies to Euclidean spaces of any dimension, including n = 2

Inverse operator given by generalized Cauchy Integral Formula

n

•  x• x’
R

∂R

Good for electrostatic and magnetostatic problems!



Vector derivative vs. Dirac operatorWhat’s in a name?

(vector                    ) (coordinates      )

Geometric (multivector-valued) function: A = A(x)
Symbols: DA = divA + rot A  (Riesz)
Names:    del (grad) = div + curl        Dirac op = Gauss + Maxwell

Clifford analysis:       Applies differential forms to CA
Geometric Calculus:  Develops differential forms within GA

Def:

[Reference: Differential Forms in Geometric Calculus (1993)]

Areolar derivative (Pompieu, 1910)
Volumetric deriv. (Théodorescu, 1931)

(Mitrea)

Main issue:  How does       (or D)   relate to the
Fundamental Theorem of Calculus vs. Stokes Theorem ?





Mappings of &   Transformations on Vector Manifolds

Theorem:

Induced transformations of vector fields (active)

•a

differential:

Tensor fields: covariant: , contravariant:

•

x

f

•

diffeomorphism:

•

adjoint:



•

•

outermorphism:

Jacobian:

Chain rule: (induced mapping of differential operators)

or

}



Derivation of the gauge tensor

For the gradient of a scalar:

To make this invariant, define a gauge tensor so that

⇒ Position gauge invariant vector derivative:

Displacement Gauge Principle:  The equations of physics
must be invariant under arbitrary field displacements.

induces a substitution field displacement:

An arbitrary diffeomorphism of spacetime onto itself

Regard this as a NEW general approach to Differential Geometry!!



Summary:   Gauge Theory Gravity Principles for Differential Geometry

II. Displacement Gauge Principle:  The equations of physics must be 
invariant under arbitrary smooth remappings of events in spacetime.
Physical interpretation: This can be regarded as a precise gauge theory

formulation of Einstein’s General Relativity Principle as a 
symmetry group of mappings on spacetime.
– It cleanly separates coordinate dependence of spacetime 

maps from physical dependence of metrical relations.

– which can be identified as a gravitational potential,

Physical implication: ⇒ Existence of a gauge tensor (field)

– essentially equivalent to Einstein’s metric tensor.

I. Rotation Gauge Principle: The equations of physics must be 
covariant under local Lorentz rotations.

Physical significance: This can be regarded as a precise gauge theory
formulation of Einstein’s Equivalence Principle.

⇒ Existence of a geometric connexion (field)Physical implication:



Where Topology meets Geometry!

Geometric Calculus needs to be extended
to treat singularities on/of manifolds:

Boundaries, holes and intersections
versus

Singular fields on manifolds 

Crucial questions and examples come from physics!



EM field:

Spacetime point: Coordinates:

Electromagnetic Field Singularities

Derivative:

Charge current: Div     Curl
Maxwell’s Eqn:

Potential:

Charge conservation:



Alternative formulations for E & M

EM Tensor:

EM 2-form:

Current 1-form: 3-form:

Dual form:

Exterior differential:

Dual differential:

Maxwell’s
Equations:

STA Tensor Differential form

invariant               covariant



Universal Electrodynamics for Material Media

Field Field density or excitation
(Sommerfeld)

G = D+ iHF = E+ iB

∇∧ F = 0    ⇒    F = ∇∧ A
∇⋅G = J     ⇒    ∇⋅ J = 0

Field
Equations

∇∧ Gi( ) = Ji    ⇒    ∇∧ Ji( ) = 0Dual form: metric
independent! 

Maxwell field: M = F +Gi
Field Equation: ∇∧M = Ji

Constitutive relations:
 ∇⋅ M = J0Gravitation?? metric

dependent!

 G = χ F( )
For the electron:  G = ρ−1F To be explained!



Cartan’s Differential Forms in Geometric Calculus

D. Hestenes, Differential Forms in Geometric Calculus. In F. Brackx et al. (eds),
Clifford Algebras and their Applications in Mathematical Physics (1993)

 d
kx = d1x ∧ d2x ∧…∧ dkx

d4x = d1x ∧ d2x ∧ d3x ∧ d4x = d4x i

dµx = eµdx
µ    (no sum on µ)Tangent vectors for coordinates xµ :

Volume elements:

i2 = −1
Differential k-form: K = dkx ⋅K     for k-vector field:   K = K k = K (x)

Exterior differential: dK = dk+1x ⋅(∇∧K )

Stokes Theorem:
 
dK

Σ∫ = K
∂Σ!∫

Exterior product: A ∧K = dk+1x ⋅(A∧K ) A = dx ⋅A = A ⋅dx1-form:

Closed k-form:

Exact k-form: K = dJ ⇒ dK = 0   ⇔   K = ∇∧ J ⇒∇∧K = 0
 

K
∂Σ!∫ = 0 for  all k-cycles

ddJ = 0   ⇔   ∇∧∇∧ J = 0



R. M. Kiehn: Cartan’s Corner:  http://www.cartan.pair.com/

Topological
Electrodynamics 

Topological
Thermodynamics 

metric 
independence 

Differential Forms in Physics 

 A = A ⋅dxVector Potential Action  Integral
   A = A!∫

 
G = Gi( ) ⋅d 2x = d 2x ∧G( ) ⋅ iField intensity Topological defects

 
dG = J = Ji( ) ⋅d 3x = d 3x ∧ J( ) ⋅ i

Pfaff sequence:  

 

A
dA = F
A∧ dA
dA∧ dA

Topological Action
Topological Vorticity
Topological Torsion
Topological Parity

1-form:
2-form:
3-form:
4-form:  

G
A∧G :
d A∧G( ) = F ∧G − A∧ J

Topological spin

Faraday’s Law:
  F = 0!∫ Gauss-Ampere Law:

  G = J∫!∫



Recall the definition of free space in Maxwell Theory

Wave Equation

Maxwell’s equation for a homogeneous, isotropic medium
ε = permitivity (dielectric constant)
μ = (magnetic) permeability

Invariant under Lorentz transformations

� 

µ
ε

Maxwell’s Equation



Electron as singularity in the physical vacuum 

Electromagnetic vacuum defined by: εµ = 1
c2

= ε0µ0 (Maxwell)         

(E. J. Post)         Vacuum impedence
undefined: Z(x) = µ

ε
= 1
ρ(x)

µ0
ε0

Blinder function: ρ = ρ x( ) = µ
ε

ε0
µ0

= e−λe /r

Point charge path & velocity: 
 
z = z τ( ),      v = !z = 1

c
dz
dτ  

Retarded distance: r = x − z(τ )( ) ⋅v   with   x − z(τ )( )2 = 0

Classical electron radius λe =
e2

mec
2

Vector potential:
in Maxwell Thry

e
c
Ae =

e2

cλe
ρv = ρmecv Momentum density

in Dirac Theory

 ρ =ψ !ψSuggests unification of Maxwell & Dirac by reinterpreting: 



THE END

Or a beginning 

for reform of the mathematics curriculum



Google:   V. I. Arnold On Teaching Mathematics (Paris, 1997)
“Mathematics is a part of physics.
Physics is an experimental science, a part of natural science.
Mathematics is the part of physics where experiments are cheap.”

“In the middle of the 20th century it was attempted to divide 
physics and mathematics. 

The consequences turned out to be catastrophic. 
Whole generations of mathematicians grew up without

knowing half of their science and, of course
in total ignorance of other sciences.”

Where did mathematics come from?

Physics is no longer a required minor for math students!!Current state:

Physics should be fully integrated into the math curriculum!!Conclusion:



Essential reforms of the Mathematics Curriculum

Linear Algebra  [Ref. Design of Linear Algebra]
Begin with GA (universal number system)

Extend linear vector functions to whole GA
–– Outermorphisms

Use coordinate–free methods
Treat reflections and rotations early
Subsume matrix algebra to GA

Real and complex analysis, 
multivariable and many-dimensional calculus
–– unified, coordinate-free treatment with GC

Geometric Calculus and Differential geometry 
Lie Groups & Transformations

Conformal Geometric Algebra

Programming and Computing



More on history of mathematics
and origins of Geometric Algebra



Landmark Inventions in Mathematical Physics

✩ Analytic Geometry (1637 Descartes)
first integration of algebra and geometry

✩ Differential and Integral Calculus (~ 1670 Newton & Leibniz)
� Newtonian Mechanics 1687

Perfected ~1780+ by Euler, Lagrange, Laplace

✩ Complex variable theory (~1820+ Gauss, Cauchy, Riemann)
� Celestial mechanics and chaos theory (1887 Poincaré)
� Quantum mechanics (1926 Schrödinger)

✩ Vector calculus (1881 Gibbs)
� Electrodynamics (1884 Heaviside)

✩ Tensor calculus (1890 Ricci)
� General Relativity (1955 Einstein)

✩ Group Theory (~1880 Klein, Lie)
� Quantum mechanics (1939 Weyl, Wigner)
� Particle physics (1964 Gell-Mann, etc.)

✩ Matrix algebra (1854+ Cayley)
� Quantum mechanics (1925 Heisenberg, Born & Jordan)

19th
Century

✩ Geometry (-230 Euclid) the foundation for measurement



Eddington 1948

Schenberg 1960

Peano 1888

Whitehead 1898
Universal Algebra

Forder 1941

biquaternions
screw theory

Evolution of
GA/GC



The Figure shows only major strands in the history of GA
Real history is much more complex and nonlinear,

with many intriguing branches and loops
I welcome suggestions to improve my simplified account

The most important historical loop in the Figure is 
The branches of Grassmann’s influence 
through Clifford and Cartan

• Essentially separated from Clifford algebra,
• Grassmann’s geometric concepts evolved 

through differential forms to be formalized
in the mid 20th century by Bourbaki
(a step backward from Grassmann)

          • The two were then combined to fulfill
Grassmann’s vision for a truly
universal geometric algebra



Contributions of Marcel Reisz to Clifford (geometric) algebra

Mainly in his lecture notes Clifford Numbers and Spinors (1958)
Origins mysterious – one paper on Dirac equation in GR (1953)

in Swedish conference proceedings
Main research on analysis and Cauchy problem in Rel.

Known through reference in my Space Time Algebra (1966)
Lounesto arranged publication (Kluwer 1993) with notes

Immediate impact on me (Nov 1958)
I was prepared in differential forms, Dirac theory & QED
Catalyzed insights to integrate them geometrically
Supplied algebraic techniques that I combined with Feynman’s
Suggested elimination of matrices by identifying 

spinors with elements of minimal ideals

Launched me on a research program to 
develop unified, coordinate-free methods for physics
discover geometric meaning for complex numbers in QM



Multiple discoveries and isolated results in the historical record
Multiple discovery of the generalized Cauchy Integral formula

–– discussed in my 1985 lecture
Another example,         Maxwell’s equation:

Silberstein (1924), Lanczos (1929) – complex quaternions
Juvet (1930),  Riesz (1953, 58),  . . .

–– who deserves the credit?     

Impact and influence as tests of historical significance:
•  Is the work systemic or isolated?
•  Does it generate more results from the author?
•  Does it stimulate work by others?

Priority vs. Impact

Isolated results –– impact depends on access besides intrinsic value
Quaternions –– favorite example
Classical geometry & screw theory –– branches of math isolated
Invariant theory –– marginalized 



I. Intro to GA and non-relativistic applications
• Oersted Medal Lecture 2002 (Web and AJP)
• NFCM (Kluwer, 2nd Ed.1999)
• New Foundations for Mathematical Physics (Web)

1. Synopsis of GA     2. Geometric Calculus

Lasenby & Doran, Geometric Algebra for Physicists
(Cambridge: The University Press, Fall 2002).

II. Relativistic Physics (covariant formulation)
• NFCM (chapter 9 in 2nd Ed.)
• Electrodynamics (W. E. Baylis, Birkhäuser, 1999)

Outline and References
<http:\\modelingnts.la.asu.edu>     <http://www.mrao.cam.ac.uk>

III. Spacetime Physics (invariant formulation)
• Spacetime Physics with Geometric Algebra (Web & AJP)
• Doran, Lasenby, Gull, Somaroo & Challinor, 

Spacetime Algebra and Electron Physics (Web)


