Geometric Calculus \&
 Differentíal Forms

David Hestenes
Arizona State University

Family Tree for Geometric Calculus

What is Geometric Algebra?

First answer: a universal number system for all of mathematics!
An extension of the real number system to incorporate the geometric concepts of direction, dimension and orientation

Can define by introduce anticommuting units (vectors):
(Grassmann)

$$
\begin{array}{ll}
e_{j} e_{k}=-e_{k} e_{j} & \text { for } j \neq k \quad j, k=-\mathrm{m}, \ldots,-1,1,2, \ldots \mathrm{n} \\
e_{k}^{2}= \pm 1 & \text { signature }=\text { sign of index } k
\end{array}
$$

(Clifford)
associative and distributive rules
Arithmetic constructs: vector space $\mathcal{R}^{n, m}$ algebra $\mathcal{R}_{n, m}$ (Dirac, Jordan) grandmother algebra $\mathcal{R}_{\infty, \infty}$ (quantum field theory)

Naming the numbers: Clifford numbers or la rue de Bourbaki?
Clifford followed Grassmann in selecting descriptive names:
Directed numbers or multivectors: vectors, bivectors, ... versors, rotors, spinors

What is Geometric Algebra?
 Second answer: a universal geometric language!

Geometric interpretation elevates the mathematics of $\mathcal{R}_{n, m}$ from mere arithmetic to the status of a language!!

Hermann Grassmann's contributions:

- Concepts of vector and k-vector with geometric interpretations
- System of universal operations on k-vectors

O Progressive (outer) product (step raising)
O Regressive product (step lowering)
O Inner product
o Duality

- System of identities among operations
(repeatedly rediscovered in various forms)
- Abstraction of algebraic form from geometric interpretation
- Unsuccessful algebra of points \rightarrow (Conformal GA)

William Kingdon Clifford - intellectual exemplar
Deeply appreciated and freely acknowledged work of others:
Grassmann, Hamilton, Riemann
Modestly assimilated it into his own work
A model of self-confidence without arrogance
Clifford's contribution to Geometric Algebra:

- Essentially completed Grassmann's number system
- Reduced all of Grassmann's operations to a single geometric product
- Combined k-vectors into multivectors of mixed step (grade).

Overlooked the significance of mixed signature and null vectors

- opportunity to incorporate his biquaternions into GA

Subsequently, Clifford algebra was developed abstractly with little reference to its geometric roots

The grammar of Geometric Algebra:

An arithmetic of directed numbers encoding the geometric concepts of magnitude, direction, sense \& dimension

- To define the grammar, begin with signature: positive, negative

$$
\mathcal{R}^{p, q} \equiv \text { Real vector space of dimension } n=p+q
$$

Vector addition and scalar multiplication do not fully encode the geometric content of the vector concept.

- To encode the geometric concept of relative direction, we define an associative geometric product $\mathbf{a b}$ of vectors $\mathbf{a}, \mathbf{b}, \ldots$ with

$$
\mathbf{a}^{2}=\varepsilon_{\mathbf{a}}|\mathbf{a}|^{2} \quad \text { where } \quad \varepsilon_{\mathbf{a}}=1,0,-1 \quad \text { is the signature of } \mathbf{a}
$$

- With the geometric product the vector space $\mathcal{R}^{p, q}$ generates the

Geometric Algebra

$$
\begin{gathered}
\mathcal{R}_{p, q}=\mathcal{G}\left(\mathcal{R}^{p, q}\right)=\sum_{k=0}^{n} \mathcal{R}_{p, q}^{k} \\
\operatorname{dim} \mathcal{R}_{p, q}=\sum_{k=0}^{n} \operatorname{dim} \mathcal{R}_{p, q}^{k}=\sum_{k=0}^{n}\left(\begin{array}{l}
n \\
k-\text { spectors } \\
k
\end{array}\right)=2^{n}
\end{gathered}
$$

Quadratic forms vs. contractions
Claim: Linear forms on a vector space can be represented by inner products in a geometric algebra without assuming a metric.
V^{n} a real vector space spanned by $\left\{w_{i}\right\}$
Dual space $\mathcal{V}^{* n}$ of linear forms spanned by $\left\{w_{j}^{*}\right\}$
And defined by $\quad w_{i}^{*}\left(w_{j}\right)=\frac{1}{2} \delta_{i j}$ or $\quad w_{i}^{*} \cdot w_{j}=\frac{1}{2} \boldsymbol{\delta}_{i j}$
The associative outer product

$$
w_{i} \wedge w_{j}=-w_{j} \wedge w_{i}
$$

generates the Grassmann algebra :

$$
\Lambda_{n}=\Lambda_{n}^{0}+\Lambda_{n}^{1}+\ldots+\Lambda_{n}^{n}=\sum_{k=0}^{n} \Lambda_{n}^{k} \quad \Lambda_{n}^{0}=\mathcal{R}, \quad \Lambda_{n}^{1}=\mathcal{V}^{n}
$$

Likewise, the dual space generates the dual algebra $\quad \Lambda_{n}^{*}=\sum_{k=0}^{n} \Lambda_{n}^{* k}$
Assume the null metric

$$
w_{i} \cdot w_{j}=0=w_{i}^{*} \cdot w_{j}^{*} \quad \text { so }
$$

\mathcal{V}^{n} has geometric product $\quad w_{i} w_{j}=w_{i} \wedge w_{j}=-w_{j} w_{i}$
Now define $\quad w_{i} w_{j}^{*}+w_{i}^{*} w_{j}=\delta_{i j} \quad w_{i}^{2}=0=w_{i}^{* 2}$
The algebra of fermion creation and annihilation operators!!

Mother algebra

$$
\mathcal{R}_{n, n}=\mathcal{G}\left(\mathcal{R}^{n, n}\right)
$$

Covers all!
$\mathcal{R}^{n, n}=\mathcal{V}^{n} \oplus \mathcal{V}^{* n}=\mathcal{R}^{n} \oplus \overline{\mathcal{R}}^{n}$

$$
\mathcal{R}_{n, n}=\Lambda_{n} \otimes \Lambda_{n}^{*}=\mathcal{R}_{n} \otimes \overline{\mathcal{R}}_{n}
$$

Euclidean basis:

$$
e_{i}=w_{i}+w_{i}^{*} \quad \text { spans } \mathcal{R}^{n}
$$

Anti-Euclidean basis:

$$
\bar{e}_{i}=w_{i}-w_{i}^{*} \quad \text { spans } \mathcal{R}^{n}
$$

$$
e_{i} \cdot e_{j}=\delta_{i j}, \quad e_{i} \cdot \bar{e}_{j}=0, \quad \bar{e}_{i} \cdot \bar{e}_{j}=-\delta_{i j}
$$

$\mathcal{R}_{p, q} \subset \mathcal{R}_{n, n}(p+q=n)$ All signatures in subalgebras
Ideal arena for linear algebra

$$
\mathcal{R}_{\infty, \infty} \quad \text { All dimensions! }
$$

[Ref. Doran et.al., Lie Groups as Spin Groups]

Universal Geometric Algebra

Real Vector Space: $\mathbb{V}^{r, s}=\{a, b, c, \ldots\} \quad$ dimension $r+s=n$
Geometric product: $a^{2}= \pm|a|^{2} \quad$ nondegenerate signature $\{r, s\}$
generates Real GA: $\mathbb{G}^{r, s}=\mathbb{G}\left(\mathbb{V}^{r, s}\right)=\{A, G, M \ldots\}=\{$ Multivectors $\}$
Inner product: $a \cdot b \equiv \frac{1}{2}(a b+b a) \quad$ Outer product: $a \wedge b \equiv \frac{1}{2}(a b-b a)$

$$
\Rightarrow \quad a b=a \cdot b+a \wedge b \quad a \wedge A_{k} \equiv \frac{1}{2}\left(a A_{k}+(-1)^{k} A_{k} a\right)
$$

k-blade: $a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}=\left\langle a_{1} a_{2} \ldots a_{k}\right\rangle_{k} \equiv A_{k} \quad \Rightarrow \quad \underline{k}$-vector

$$
a \cdot\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}\right)=\sum_{j=1}^{k}(-1)^{j+1} a \cdot a_{j}\left(a_{1} \wedge \ldots \wedge \breve{a}_{j} \wedge \ldots \wedge a_{k}\right)
$$

Graded algebra: $\mathbb{G}^{r, s}=\sum_{k=0}^{n} \mathbb{G}_{k}^{r, s}=\left\{A=\sum_{k=0}^{n}\langle A\rangle_{k}\right\}$
Reverse: $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}\right) \sim a_{k} \wedge \ldots \wedge a_{2} \wedge a_{1} \quad \tilde{A}=\sum_{k=0}^{n}\langle\tilde{A}\rangle_{k}=\sum_{k=0}^{n}(-1)^{k(k-1) / 2}\langle A\rangle_{k}$
Unit pseudoscalar: $\quad \mathrm{I}=\langle\mathrm{I}\rangle_{n} \quad \mathrm{I}=(-1)^{s} \quad a \wedge \mathrm{I}=0$
Dual: $A^{*} \equiv A \mathrm{I} \quad$ Thm: $a \cdot A^{*}=a \cdot(A \mathrm{I})=(a \wedge A) \mathrm{I}$

Group Theory with Geometric Algebra

Versor (of order k): $G=n_{k} \ldots n_{2} n_{1} \quad G^{-1}=n_{1}{ }^{-1} n_{2}^{-1} \ldots n_{k}^{-1} \quad G^{\#}=(-1)^{k} G$
Groups: $\operatorname{Pin}(r, s)=\left\{G: G G^{-1}=1\right\} \supset \operatorname{Spin}(r, s)=\left\{G: G=G^{\#}\right\}$
on vectors: $\mathrm{O}(r, s)=\left\{\underline{G}: \underline{G}(a)=G^{\#} a G^{-1}\right\} \supset \mathrm{SO}(r, s) \cong \operatorname{\overline {2}} \operatorname{Spin}(r, s)$
Advantages over matrix representations:

- Coordinate-free
- Simple composition laws: $\quad G_{2} G_{1}=G_{3} \quad \underline{G}_{2} \underline{G}_{1}=\underline{G}_{3}$
- Reducible to multiplication and reflection by vectors:
- Reflection in a hyperplane in $\mathbb{V}_{\mathrm{r}, \mathrm{s}}$ with normal $n_{i}: \underline{G}_{i}(a)=-n_{i} a n_{i}^{-1}$
\Rightarrow Cartan-Dieudonné Thm (Lipschitz, 1880): $\quad \underline{G}=\underline{G}_{k} \cdots \underline{G}_{2} \underline{G}_{1}$
\Rightarrow Nearly all groups [Doran et. al. (1993) "Lie Groups as Spin Groups"]
For example: All the classical groups!
In particular: Conformal group: $\mathrm{C}(r, s) \cong \mathrm{O}(r+1, s+1)$
Hence define: Conformal GA: $\mathbb{G}^{r+1, s+1}$

From
 GEOMETRIC ALGEBRA
 to
 GEOMETRIC CALCULUS

What is a manifold? \mathcal{M}^{m} of dimension m

— a set on which differential and integral calculus is well-defined!

- standard definition requires covering by charts of local coordinates.
- Calculus done indirectly by local mapping to $\mathcal{R}^{m}=\mathcal{R} \otimes \mathcal{R} \cdots \otimes \mathcal{R}$
- Proofs required to establish results independent of coordinates.

Geometric Calculus defines a manifold as any set isomorphic to a vector manifold

Vector manifold $\mathcal{M}^{m}=\{x\}$ is a set of vectors in GA that generates at each point x a tangent space with pseudoscalar $I_{m}(x)$
Advantages:

- Manifestly coordinate-free
- Calculus done directly with algebraic operations on points
- Geometry completely determined by derivatives of $I_{m}(x)$.

Remark: It is unnecessary to assume that \mathcal{M}^{m} is embedded in a vector space, though embedding theorems can be proved.

How GA facilitates use of coordinates on a vector manifold
Patch of \mathcal{M}^{m} parametrized by coordinates:
Inverse mapping by coordinate functions:

$$
\begin{aligned}
& x=x\left(x^{1}, x^{2}, \ldots x^{m}\right) \\
& x^{\mu}=x^{\mu}(x)
\end{aligned}
$$

Coordinate frame $\left\{e_{\mu}=e_{\mu}(x)\right\} \quad$ defined by

$$
e_{\mu}=\partial_{\mu^{x}} x=\frac{\partial x}{\partial x^{\mu}}=\lim \frac{\Delta x}{\Delta x^{\mu}}
$$

With pseudoscalar: $\quad e_{(m)}=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{m}=\left|e_{(m)}\right| I_{m}$

Reciprocal frame $\quad\left\{e^{\mu}\right\} \quad$ implicitly defined by $\quad e^{\mu} \cdot e_{v}=\delta_{v}^{\mu}$ with solution: $\quad e^{\mu}=\left(e_{1} \wedge \ldots \wedge()_{\mu} \wedge \ldots \wedge e_{m}\right) e_{(m)}^{-1}$

Vector derivative: $\quad \partial=\partial_{x}=e^{\mu} \partial_{\mu}$

$$
\partial_{\mu}=e_{\mu} \cdot \partial=\frac{\partial}{\partial x^{\mu}}
$$

$$
\Rightarrow \quad e^{\mu}=\partial x^{\mu}
$$

Problem: How define vector derivative without coordinates?

Directed integrals in GA

$F=F(x)=$ multivector-valued function on $\mathcal{M}=\mathcal{M}^{m}$ $d^{m} x=\left|d^{m} x\right| I_{m}(x)=$ directed measure on \mathcal{M}

In terms of coordinates:

$d^{m} x=d_{1} x \wedge d_{2} x \wedge \ldots \wedge d_{m} x=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{m} d x^{1} d x^{2} \ldots d x^{m}$
where $\quad d_{\mu} x=e_{\mu}(x) d^{\mu} x$ (no sum)

$\left|d^{m} x\right|=\left|e_{(m)}\right| d x^{1} d x^{2} \ldots d x^{m}=$ Volume element
Directed
Integral

$$
\int_{\mathcal{M}} d^{m} x F=\int_{\partial \mathbb{M}} e_{(m)} F d x^{1} d x^{2} \ldots d x^{m}
$$

Fundamental Theorem of Geometric Calculus

For $\mathcal{M}=\mathcal{M}^{m} \subset \mathcal{V}^{n}=$ vector space,

$$
\nabla=\text { vector derivative on } \mathcal{V}^{n}
$$

$$
\int_{\mathcal{M}}\left(d^{m} x\right) \cdot \nabla F=\int_{\partial \mathcal{M}} d^{m-1} x F
$$

$$
\partial=\partial_{x}=I_{m}^{-1}\left(I_{m} \cdot \nabla\right)=\text { vector derivative on } \mathcal{M}
$$

$$
\Rightarrow \quad d^{m} x \partial=\left(d^{m} x\right) \cdot \partial=\left(d^{m} x\right) \cdot \nabla
$$

$$
\quad \int_{\mathcal{M}} d^{m} x \partial F=\int_{\partial \mathcal{M}} d^{m-1} x F
$$

Inspires coordinate-free definition for the
tangential derivative: $\quad \partial=\partial_{x}=$ derivative by x on \mathcal{M}

$$
\partial F=\lim _{d \omega \rightarrow 0} \frac{1}{d \omega} \oint d \sigma F \quad \begin{aligned}
& d \omega=d^{m} x \\
& d \sigma=d^{m-1} x
\end{aligned}
$$

Theory of differential forms generalized by GA
$L\left(d^{k} x, x\right)=$ multivector-valued k-form

$$
\begin{aligned}
& =\quad \text { linear function of } k \text {-vector } d^{k} x \text { at each point } x . \\
& \text { e.g.: } L=d^{k} x=k \text {-vector valued } k \text {-form }
\end{aligned}
$$

Exterior differential of k-form L :

$$
d L \equiv \dot{L}\left(d^{k+1} x \cdot \dot{\partial}\right)=L\left(d^{k+1} x \cdot \dot{\partial}, \dot{x}\right)
$$

Fundamental Theorem: (most general form)

$$
\int_{\mathcal{M}} d L=\oint_{\partial \mathcal{M}} L
$$

Special cases: $\quad L=d^{k} x F(x) \quad L=\left\langle d^{m-1} x F\right\rangle$

$$
\begin{aligned}
d L=\left\langle d^{m} x \partial F\right\rangle & =\left\langle d^{m} x \partial \wedge F\right\rangle \\
& =\left(d^{m} x\right) \cdot(\partial \wedge F) \text { if } F=\langle F\rangle_{m-1}
\end{aligned}
$$

Advantages over standard theory:

- Cauchy Theorem:
- Cauchy Integral Theorem

$$
\partial F=0 \quad \Leftrightarrow \quad \oint d^{k} x F=0
$$

Advantages of the vector derivative:

$$
\nabla A=\lim _{d \omega \rightarrow 0} \frac{1}{d \omega} \oint d \sigma A
$$

- Applies to all dimensions
- Coordinate-free
- Simplifies Fund. Thm.
- Generalizes definition

Inverse operator given by generalized Cauchy Integral Formula

$$
A\left(x^{\prime}\right)=\frac{(-1)^{n}}{\Omega_{n} I_{n}}\left\{\int_{\mathrm{R}} \frac{x-x^{\prime}}{\left|x-x^{\prime}\right|^{n}} d \omega \nabla A-\int_{\partial \mathrm{R}} \frac{x-x^{\prime}}{\left|x-x^{\prime}\right|^{n}} d \sigma A\right\}=\nabla^{-1} s
$$

or

$$
\Omega_{n}=\frac{2 \pi^{\frac{1}{2} n}}{\Gamma\left(\frac{n}{2}\right)} \quad d \omega=I_{n}|d \omega| \quad I_{n}^{-1} d \sigma=n|d \sigma|
$$

$$
A\left(x^{\prime}\right)=\frac{1}{\Omega_{n}}\left\{-\int_{\mathrm{R}}|d \omega| \frac{x-x^{\prime}}{\left|x-x^{\prime}\right|^{\prime}} \nabla A+\int_{\partial \mathrm{R}}|d \sigma| \frac{x-x^{\prime}}{\left|x-x^{\prime}\right|^{n}} n A\right\}
$$

Applies to Euclidean spaces of any dimension, including $n=2$
Good for electrostatic and magnetostatic problems!

> What's in a name? Vector derivative vs. Dirac operator
> (vector $x=x^{\mu} \gamma_{\mu}$) $\quad \nabla=\partial_{x} \quad D=\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} \quad\left(\right.$ coordinates $\left.x^{\mu}\right)$

Geometric (multivector-valued) function: $A=A(x)$
Symbols: $\quad \nabla A=\nabla \cdot A+\nabla \wedge A \quad D A=\operatorname{divA}+\operatorname{rot} A$ (Riesz)
Names: $\quad \operatorname{del}($ grad $)=\operatorname{div}+$ curl \quad Dirac op $=$ Gauss + Maxwell
Main issue: How does ∇ (or D) relate to the

Fundamental Theorem of Calculus vs. Stokes Theorem?

Clifford analysis: Applies differential forms to CA
Geometric Calculus: Develops differential forms within GA
[Reference: Differential Forms in Geometric Calculus (1993)]
Def: $\nabla A \equiv \lim _{d \omega \rightarrow 0} \frac{1}{d \omega} \oint d \sigma A$
(Mitrea) $\quad \nabla A \cong \frac{\partial A}{\partial \omega} \quad \begin{aligned} & \text { Areolar derivative (Pompieu, 1910) } \\ & \text { Volumetric deriv. (Théodorescu, 1931) }\end{aligned}$

Family Tree for Geometric Calculus

Mappings of \& Transformations on Vector Manifolds

Induced transformations of vector fields (active)
differential: $\quad \underline{f}: a=a(x) \rightarrow \quad a^{\prime}=\underline{f}(a) \equiv a \cdot \nabla f \quad a=\underline{f}^{-1}\left(a^{\prime}\right)$
adjoint: $\quad \bar{f}: b^{\prime}=b^{\prime}\left(x^{\prime}\right) \rightarrow b=\bar{f}\left(b^{\prime}\right) \equiv \grave{\nabla} \grave{f} \cdot b^{\prime}=\partial_{x} f(x) \cdot b^{\prime}$
Tensor fields: $\quad T\left(a, b^{\prime}\right)$ covariant: $\bar{f}\left(b^{\prime}\right)$, contravariant: $\underline{f}(a)$
Theorem: $\quad \overline{f^{-1}}=\bar{f}^{-1}: \quad b(x) \rightarrow \quad b^{\prime}\left(x^{\prime}\right)=\overline{f^{-1}}\left[b\left(f\left(x^{\prime}\right)\right)\right]$

Chain rule: (induced mapping of differential operators)

$$
\begin{array}{rlrl}
\bar{f}: \nabla^{\prime} & \rightarrow \nabla=\bar{f} \nabla^{\prime} \quad \text { or } \quad \partial_{x}=\bar{f}\left(\partial_{x^{\prime}}\right) \\
& \Rightarrow a \cdot \nabla=a \cdot \bar{f}\left(\nabla^{\prime}\right)=\underline{f}(a) \cdot \nabla^{\prime}=a^{\prime} \cdot \nabla^{\prime} \\
x=x(\tau) \\
\left.\dot{x}=\frac{d x}{d \tau}\right\} & \Rightarrow \frac{d}{d \tau}=\dot{x} \cdot \nabla=\dot{x} \cdot \dot{f}\left(\nabla^{\prime}\right)=\underline{f}(\dot{x}) \cdot \nabla^{\prime}=\dot{x}^{\prime} \cdot \nabla^{\prime}
\end{array}
$$

Derivation of the gauge tensor

Displacement Gauge Principle: The equations of physics must be invariant under arbitrary field displacements.

An arbitrary diffeomorphism of spacetime onto itself

$$
f: x \rightarrow x^{\prime}=f(x) \quad x=f^{-1}\left(x^{\prime}\right)
$$

induces a substitutionfield displacement: $F(x) \rightarrow F^{\prime}(x) \equiv F\left(x^{\prime}\right)=F[f(x)]$
For the gradient of a scalar: $\quad \nabla \varphi^{\prime}(x)=\nabla \varphi[f(x)]=\bar{f}\left[\nabla^{\prime} \varphi\left(x^{\prime}\right)\right]$
To make this invariant, define a gauge tensor \bar{h} so that

$$
\begin{aligned}
& \bar{h}[\nabla \varphi(x)] \rightarrow \bar{h}^{\prime}\left[\nabla \varphi^{\prime}(x)\right]=\bar{h}\left[\nabla^{\prime} \varphi\left(x^{\prime}\right)\right]=\bar{h} \bar{f}^{-1} \nabla \varphi^{\prime}(x) \\
& \Rightarrow \bar{h} \rightarrow \bar{h}^{\prime}=\bar{h} \bar{f}^{-1} \\
& \Rightarrow \text { Position gauge invariant vector derivative: } \bar{\nabla} \equiv \bar{h} \nabla \rightarrow \bar{h} \nabla^{\prime}=\bar{h}^{\prime} \nabla
\end{aligned}
$$

Regard this as a NEW general approach to Differential Geometry!!

Summary: Gauge Theory Gravity Principles for Differential Geometry

I. Rotation Gauge Principle: The equations of physics must be covariant under local Lorentz rotations.

Physical significance: This can be regarded as a precise gauge theory formulation of Einstein's Equivalence Principle.
Physical implication: \Rightarrow Existence of a geometric connexion (field)
II. Displacement Gauge Principle: The equations of physics must be invariant under arbitrary smooth remappings of events in spacetime.
Physical interpretation: This can be regarded as a precise gauge theory formulation of Einstein's General Relativity Principle as a symmetry group of mappings on spacetime.

- It cleanly separates coordinate dependence of spacetime maps from physical dependence of metrical relations.
Physical implication: \Rightarrow Existence of a gauge tensor (field)
- which can be identified as a gravitational potential,
- essentially equivalent to Einstein's metric tensor.

Where Topology meets Geometry!

Geometric Calculus needs to be extended to treat singularities on/of manifolds:

Boundaries, holes and intersections versus
Singular fields on manifolds

Crucial questions and examples come from physics!

Electromagnetic Field Singularities

Spacetime point: $\quad x=x^{\mu} \gamma_{\mu} \quad$ Coordinates: $\quad x^{\mu}=x \cdot \gamma^{\mu}$
Derivative: $\quad \partial=\partial_{x}=\gamma^{\mu} \partial_{\mu}$
$\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=\gamma^{\mu} \cdot \partial$
EM field: $\quad F=F(x)=\frac{1}{2} F^{v \mu} \gamma_{\mu} \wedge \gamma_{v}$
Charge current: $\quad J=J(x)=J^{\mu} \gamma_{\mu} \quad$ Div Curl
Maxwell's Eqn: $\quad \partial F=J \quad \partial F=\partial \cdot F+\partial \wedge F$

$$
\Rightarrow \partial \cdot F=J \quad \partial \wedge F=0
$$

Potential: $\quad F=\partial \wedge A=\partial A \quad$ if $\quad \partial \cdot A=0$

$$
\Rightarrow \quad \partial^{2} A=J
$$

Charge conservation: $\quad \partial^{2} F=\partial J=\partial \cdot J+\partial \wedge J$

$$
\Rightarrow \quad \partial \cdot J=0 \quad \partial^{2} F=\partial \wedge J
$$

Alternative formulations for E \& M

EM 2-form:

$$
\omega=\omega\left(d_{1} x \wedge d_{2} x\right)=\left(d_{1} x \wedge d_{2} x\right) \cdot F
$$

EM Tensor:

$$
F^{\mu v}=\left(\gamma^{\mu} \wedge \gamma^{v}\right) \cdot F=\gamma^{v} \cdot F \cdot \gamma^{\mu}=\omega\left(\gamma^{\mu} \wedge \gamma^{\nu}\right)
$$

Current 1-form: $\quad \alpha=J \cdot d x \quad 3$-form: $* \alpha=d^{3} x \cdot(J i)$
Dual form:

$$
* \omega=\left(d_{1} x \wedge d_{2} x\right) \cdot(F i)
$$

Exterior differential: $\quad d \omega=d^{3} x \cdot(\nabla \wedge F) \quad d^{3} x=d_{1} x \wedge d_{2} x \wedge d_{3} x$
Dual differential: $\quad d * \omega=d^{3} x \cdot(\nabla \wedge(F i))=d^{3} x \cdot((\nabla \cdot F) i)$
$\underline{\text { STA Tensor } \quad \text { Differential form }}$
Maxwell's
Equations:

$$
\nabla \cdot F=J
$$

$$
\partial_{\mu} F^{\mu v}=J^{v}
$$

$$
\nabla \wedge F=0
$$

$$
\partial_{[\alpha} F_{\mu \nu]}=0
$$

$$
\begin{gathered}
d * \omega=* \alpha \\
d \omega=0
\end{gathered}
$$

invariant covariant

$$
\nabla F=J \quad \Rightarrow \quad F=\nabla^{-1} J
$$

Universal Electrodynamics for Material Media

Field $F=\mathbf{E}+i \mathbf{B} \quad G=\mathbf{D}+i \mathbf{H} \quad$ Field density or excitation
Field
Equations

$$
\begin{array}{l|rll|}
\begin{array}{l}
\text { Field } \\
\text { Equations }
\end{array} & \nabla \wedge F=0 & \Rightarrow & F=\nabla \wedge A \\
\nabla \cdot G=J & \Rightarrow & \nabla \cdot J=0 \\
\text { Dual form: } & \nabla \wedge(G i)=J i & \Rightarrow \nabla \wedge(J i)=0
\end{array}
$$

(Sommerfeld)

$$
\begin{array}{ll}
\text { Maxwell field: } & M=F+G i \\
\text { Field Equation: } & \nabla \wedge M=J i
\end{array}
$$

$$
\begin{aligned}
& \text { Gravitation?? } \quad \nabla \text {. } \\
& \text { elations: } \quad G=\chi(F)
\end{aligned}
$$

For the electron: $\quad G=\rho^{-1} F \quad$ To be explained!

Cartan's Differential Forms in Geometric Calculus

Tangent vectors for coordinates $x^{\mu}: d_{\mu} x=e_{\mu} d x^{\mu} \quad$ (no sum on μ)
Volume elements: $d^{k} x=d_{1} x \wedge d_{2} x \wedge \ldots \wedge d_{k} x$

$$
d^{4} x=d_{1} x \wedge d_{2} x \wedge d_{3} x \wedge d_{4} x=\left|d^{4} x\right| i \quad i^{2}=-1
$$

Differential k-form: $\bar{K}=d^{k} x \cdot K \quad$ for k-vector field: $K=\langle K\rangle_{k}=K(x)$
Exterior product: $\quad \bar{A} \wedge \bar{K}=d^{k+1} x \cdot(A \wedge K) \quad 1$-form: $\bar{A}=d x \cdot A=A \cdot d x$
Exterior differential: $d \bar{K}=d^{k+1} x \cdot(\nabla \wedge K)$
Stokes Theorem: $\quad \int_{\Sigma} d \bar{K}=\oint_{\partial \Sigma} \bar{K}$
Closed k-form: $\quad \oint_{\partial \Sigma} \bar{K}=0 \quad$ for all k-cycles
Exact k-form: $\quad \bar{K}=d \bar{J} \Rightarrow d \bar{K}=0 \quad \Leftrightarrow \quad K=\nabla \wedge J \Rightarrow \nabla \wedge K=0$

$$
d d \bar{J}=0 \quad \Leftrightarrow \quad \nabla \wedge \nabla \wedge J=0
$$

D. Hestenes, Differential Forms in Geometric Calculus. In F. Brackx et al. (eds),

Clifford Algebras and their Applications in Mathematical Physics (1993)

Differential Forms in Physics
R. M. Kiehn: Cartan's Corner: http://www.cartan.pair.com/

| Topological
 Electrodynamics | metric
 independence | Topological
 Thermodynamics |
| :---: | :---: | :---: | :---: |
| Vector Potential | $\bar{A}=A \cdot d x \quad \mathcal{A}=\oint \bar{A}$ | Action Integral |

Field intensity $\quad \bar{G}=(G i) \cdot d^{2} x=\left(d^{2} x \wedge G\right) \cdot i$ Topological defects

$$
d \bar{G}=\bar{J}=(J i) \cdot d^{3} x=\left(d^{3} x \wedge J\right) \cdot i
$$

Pfaff sequence:
1-form: $\bar{A} \quad$ Topological Action
$\begin{array}{lll}\text { 2-form: } & d \bar{A}=\bar{F} & \text { Topological Vorticity } \\ \text { 3-form: } & \bar{G} \\ \bar{A} \wedge d \bar{A} & \text { Topological Torsion } & \bar{A} \wedge \text { : Topological spin }\end{array}$ 4-form: $d \bar{A} \wedge d \bar{A} \quad$ Topological Parity $\quad d(\bar{A} \wedge \bar{G})=\bar{F} \wedge \bar{G}-\bar{A} \wedge \bar{J}$

Faraday's Law: $\oint \bar{F}=0 \quad$ Gauss-Ampere Law: $\quad \oint \bar{G}=\int \bar{J}$

Recall the definition of free space in Maxwell Theory
Maxwell's equation for a homogeneous, isotropic medium

$$
\begin{aligned}
& \varepsilon=\text { permitivity (dielectric constant) } \\
& \mu=\text { (magnetic) permeability }
\end{aligned} \quad \mathbf{G}=\mathbf{E}+\frac{\boldsymbol{i}}{\sqrt{\mu \varepsilon}} \mathbf{B}
$$

$$
\begin{array}{rlr}
\left(\sqrt{\mu \varepsilon} \partial_{t}-\nabla\right) \mathrm{G}=0 & \text { Maxwell's Equation } \\
\left(\sqrt{\mu \varepsilon} \partial_{t}+\nabla\right) \times\left(\sqrt{\mu \varepsilon} \partial_{t}-\nabla\right) \mathrm{G}=0 & \\
=\left(\mu \varepsilon \partial_{t}^{2}-\nabla^{2}\right) \mathrm{G}=0 & \\
& \left(c^{-2} \partial_{t}^{2}-\nabla^{2}\right) \mathrm{G}=0 & \text { Wave Equation } \\
\hline
\end{array}
$$

$\mathrm{c}=1 / \sqrt{\mu \varepsilon}=$ velocity of light in the medium $=$ free space
D'Alembertian: $\square^{2}=c^{-2} \partial_{t}^{2}-\nabla^{2}$ Wave operator Invariant under Lorentz transformations
\Rightarrow Theory of relativity But $\sqrt{\frac{\mu}{\varepsilon}}=\rho(x)=$??

Electron as singularity in the physical vacuum

Electromagnetic vacuum defined by: $\varepsilon \mu=\frac{1}{c^{2}}=\varepsilon_{0} \mu_{0}$ (Maxwell)
Vacuum impedence undefined:

$$
\begin{equation*}
Z(x)=\sqrt{\frac{\mu}{\varepsilon}}=\frac{1}{\rho(x)} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \tag{E.J.Post}
\end{equation*}
$$

Blinder function: $\rho=\rho(x)=\sqrt{\frac{\mu}{\varepsilon}} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}=e^{-\lambda_{e} / r}$
Point charge path \& velocity: $\quad z=z(\tau), \quad v=\dot{z}=\frac{1}{c} \frac{d z}{d \tau}$
Retarded distance: $\quad r=(x-z(\tau)) \cdot v$ with $\quad(x-z(\tau))^{2}=0$
Classical electron radius $\lambda_{e}=\frac{e^{2}}{m_{e} c^{2}}$
Vector potential: in Maxwell Thry

$$
\frac{e}{c} A_{e}=\frac{e^{2}}{c \lambda_{e}} \rho v=\rho m_{e} c v
$$

Momentum density in Dirac Theory

Suggests unification of Maxwell \& Dirac by reinterpreting: $\rho=\psi \tilde{\psi}$

THE END

Or a beginning

for reform of the mathematics curriculum

Where did mathematics come from?

Google: V. I.Arnold On Teaching Mathematics (Paris, 1997)

"Mathematics is a part of physics.
Physics is an experimental science, a part of natural science.
Mathematics is the part of physics where experiments are cheap."
"In the middle of the 20th century it was attempted to divide physics and mathematics.
The consequences turned out to be catastrophic.
Whole generations of mathematicians grew up without knowing half of their science and, of course in total ignorance of other sciences."

Current state: Physics is no longer a required minor for math students!!
Conclusion: Physics should be fully integrated into the math curriculum!!

Essential reforms of the Mathematics Curriculum

Linear Algebra [Ref.Design of Linear Algebra]
Begin with GA (universal number system)
Extend linear vector functions to whole GA

- Outermorphisms

Use coordinate-free methods
Treat reflections and rotations early
Subsume matrix algebra to GA
Conformal Geometric Algebra
Real and complex analysis, multivariable and many-dimensional calculus
— unified, coordinate-free treatment with GC
Geometric Calculus and Differential geometry
Lie Groups \& Transformations
Programming and Computing

More on history of mathematics
and origins of Geometric Algebra

Landmark Inventions in Mathematical Physics

Aeometry (-230 Euclid) the foundation for measurement

* Analytic Geometry (1637 Descartes)
first integration of algebra and geometry
\star Differential and Integral Calculus (~ 1670 Newton \& Leibniz)
- Newtonian Mechanics 1687

Perfected $\sim 1780+$ by Euler, Lagrange, Laplace
Complex variable theory ($\sim 1820+$ Gauss, Cauchy, Riemann)

- Celestial mechanics and chaos theory (1887 Poincaré)
- Quantum mechanics (1926 Schrödinger)
\star Vector calculus (1881 Gibbs)
- Electrodynamics (1884 Heaviside)

19th
Century
\star Tensor calculus (1890 Ricci)

- General Relativity (1955 Einstein)
\star Matrix algebra (1854+ Cayley)
- Quantum mechanics (1925 Heisenberg, Born \& Jordan)
© Group Theory (~ 1880 Klein, Lie)
- Quantum mechanics (1939 Weyl, Wigner)
- Particle physics (1964 Gell-Mann, etc.)

The Figure shows only major strands in the history of GA
Real history is much more complex and nonlinear, with many intriguing branches and loops
I welcome suggestions to improve my simplified account
The most important historical loop in the Figure is
The branches of Grassmann's influence
through Clifford and Cartan

- Essentially separated from Clifford algebra,
- Grassmann's geometric concepts evolved through differential forms to be formalized in the mid 20th century by Bourbaki (a step backward from Grassmann)
- The two were then combined to fulfill

Grassmann's vision for a truly universal geometric algebra

Contributions of Marcel Reisz to Clifford (geometric) algebra

Mainly in his lecture notes Clifford Numbers and Spinors (1958)
Origins mysterious - one paper on Dirac equation in GR (1953)
in Swedish conference proceedings
Main research on analysis and Cauchy problem in Rel.
Known through reference in my Space Time Algebra (1966)
Lounesto arranged publication (Kluwer 1993) with notes
Immediate impact on me (Nov 1958)
I was prepared in differential forms, Dirac theory \& QED
Catalyzed insights to integrate them geometrically Supplied algebraic techniques that I combined with Feynman's
Suggested elimination of matrices by identifying spinors with elements of minimal ideals

Launched me on a research program to
develop unified, coordinate-free methods for physics discover geometric meaning for complex numbers in QM

Multiple discoveries and isolated results in the historical record
Multiple discovery of the generalized Cauchy Integral formula - discussed in my 1985 lecture

Another example, Maxwell's equation: $\quad \nabla F=J$
Silberstein (1924), Lanczos (1929) - complex quaternions
Juvet (1930), Riesz (1953, 58), . . .

- who deserves the credit?

Priority vs. Impact
Impact and influence as tests of historical significance:

- Is the work systemic or isolated?
- Does it generate more results from the author?
- Does it stimulate work by others?

Isolated results - impact depends on access besides intrinsic value
Quaternions - favorite example
Classical geometry \& screw theory - branches of math isolated Invariant theory - marginalized

Outline and References

[http:\\modelingnts.la.asu.edu](http:%5C%5Cmodelingnts.la.asu.edu) http://www.mrao.cam.ac.uk
I. Intro to GA and non-relativistic applications

- Oersted Medal Lecture 2002 (Web and AJP)
- NFCM (Kluwer, 2nd Ed.1999)
- New Foundations for Mathematical Physics (Web)

1. Synopsis of GA 2. Geometric Calculus
II. Relativistic Physics (covariant formulation)

- NFCM (chapter 9 in 2nd Ed.)
- Electrodynamics (W.E. Baylis, Birkhäuser, 1999)
III. Spacetime Physics (invariant formulation)
- Spacetime Physics with Geometric Algebra (Web \& AJP)
- Doran, Lasenby, Gull, Somaroo \& Challinor,

Spacetime Algebra and Electron Physics (Web)
Lasenby \& Doran, Geometric Algebrafor Physicists (Cambridge: The University Press, Fall 2002).

