Reciprocal Frames, the Vector Derivative and Curvilinear Coordinates.

17th Santaló Summer School 2016, Santander

Joan Lasenby

```
Signal Processing Group, Engineering Department,
Cambridge, UK
and
Trinity College
Cambridge
j1221@cam.ac.uk, www-sigproc.eng.cam.ac.uk/ ~j1
```

22 August 2016

Overview

- Reciprocal Frames: examples of their use

Overview

- Reciprocal Frames: examples of their use
- definition and use of the vector derivative

Overview

- Reciprocal Frames: examples of their use
- definition and use of the vector derivative
- Curvilinear Coordinates: how reciprocal frames can be used to simplify complicated mathematics.

Overview

- Reciprocal Frames: examples of their use
- definition and use of the vector derivative
- Curvilinear Coordinates: how reciprocal frames can be used to simplify complicated mathematics.
- Summary

Reciprocal Frames

Many problems in mathematics, physics and engineering require a treatment of non-orthonormal frames.

Reciprocal Frames

Many problems in mathematics, physics and engineering require a treatment of non-orthonormal frames.
Take a set of n linearly independent vectors $\left\{e_{k}\right\}$; these are not necessarily orthogonal nor of unit length.

Reciprocal Frames

Many problems in mathematics, physics and engineering require a treatment of non-orthonormal frames.

Take a set of n linearly independent vectors $\left\{e_{k}\right\}$; these are not necessarily orthogonal nor of unit length.

Can we find a second set of vectors (in the same space), call these $\left\{e^{k}\right\}$, such that

$$
e^{i} \cdot e_{j}=\delta_{j}^{i}
$$

Reciprocal Frames

Many problems in mathematics, physics and engineering require a treatment of non-orthonormal frames.
Take a set of n linearly independent vectors $\left\{e_{k}\right\}$; these are not necessarily orthogonal nor of unit length.

Can we find a second set of vectors (in the same space), call these $\left\{e^{k}\right\}$, such that

$$
e^{i} \cdot e_{j}=\delta_{j}^{i}
$$

Reciprocal Frames

Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any vector a can be written as $a=a^{k} e_{k} \equiv \sum a^{k} e_{k}$ (ie we are adopting the convention that repeated indices are summed over), we have

$$
e^{k} \cdot a=e^{k} \cdot\left(a^{j} e_{j}\right)=a^{j}\left(e^{k} \cdot e_{j}\right)=a^{j} \delta_{j}^{k}=a^{k}
$$

Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any vector a can be written as $a=a^{k} e_{k} \equiv \sum a^{k} e_{k}$ (ie we are adopting the convention that repeated indices are summed over), we have

$$
e^{k} \cdot a=e^{k} \cdot\left(a^{j} e_{j}\right)=a^{j}\left(e^{k} \cdot e_{j}\right)=a^{j} \delta_{j}^{k}=a^{k}
$$

Similarly, since we can also write $a=a_{k} e^{k} \equiv \sum a_{k} e^{k}$

$$
e_{k} \cdot a=e_{k} \cdot\left(a_{j} e^{j}\right)=a_{j}\left(e_{k} \cdot e^{j}\right)=a_{j} \delta_{k}^{j}=a_{k}
$$

Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any vector a can be written as $a=a^{k} e_{k} \equiv \sum a^{k} e_{k}$ (ie we are adopting the convention that repeated indices are summed over), we have

$$
e^{k} \cdot a=e^{k} \cdot\left(a^{j} e_{j}\right)=a^{j}\left(e^{k} \cdot e_{j}\right)=a^{j} \delta_{j}^{k}=a^{k}
$$

Similarly, since we can also write $a=a_{k} e^{k} \equiv \sum a_{k} e^{k}$

$$
e_{k} \cdot a=e_{k} \cdot\left(a_{j} e^{j}\right)=a_{j}\left(e_{k} \cdot e^{j}\right)=a_{j} \delta_{k}^{j}=a_{k}
$$

Thus we would be able to recover the components of a given vector in a similar way to that used for orthonormal frames.

Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any vector a can be written as $a=a^{k} e_{k} \equiv \sum a^{k} e_{k}$ (ie we are adopting the convention that repeated indices are summed over), we have

$$
e^{k} \cdot a=e^{k} \cdot\left(a^{j} e_{j}\right)=a^{j}\left(e^{k} \cdot e_{j}\right)=a^{j} \delta_{j}^{k}=a^{k}
$$

Similarly, since we can also write $a=a_{k} e^{k} \equiv \sum a_{k} e^{k}$

$$
e_{k} \cdot a=e_{k} \cdot\left(a_{j} e^{j}\right)=a_{j}\left(e_{k} \cdot e^{j}\right)=a_{j} \delta_{k}^{j}=a_{k}
$$

Thus we would be able to recover the components of a given vector in a similar way to that used for orthonormal frames.
So how do we find a reciprocal frame?

Reciprocal Frames cont....

We need, for example, e^{1} to be orthogonal to the set of vectors $\left\{e_{2}, e_{3}, \ldots, e_{n}\right\}$. ie e^{1} must be perpendicular to the hyperplane $e_{2} \wedge e_{3} \wedge \ldots . \wedge e_{n}$.

Reciprocal Frames cont....

We need, for example, e^{1} to be orthogonal to the set of vectors $\left\{e_{2}, e_{3}, \ldots, e_{n}\right\}$. ie e^{1} must be perpendicular to the hyperplane $e_{2} \wedge e_{3} \wedge \ldots . \wedge e_{n}$.

We find this by dualisation, ie multiplication by I [note: I is the n-d pseudoscalar for our space]. We form e^{1} via

$$
e^{1}=\alpha e_{2} \wedge e_{3} \wedge \ldots \wedge e_{n} I
$$

Reciprocal Frames cont....

We need, for example, e^{1} to be orthogonal to the set of vectors $\left\{e_{2}, e_{3}, \ldots, e_{n}\right\}$. ie e^{1} must be perpendicular to the hyperplane $e_{2} \wedge e_{3} \wedge \ldots . \wedge e_{n}$.

We find this by dualisation, ie multiplication by I [note: I is the n-d pseudoscalar for our space]. We form e^{1} via

$$
e^{1}=\alpha e_{2} \wedge e_{3} \wedge \ldots \wedge e_{n} I
$$

α is a scalar found by dotting with e_{1} :

$$
e_{1} \cdot e^{1}=1=e_{1} \cdot\left(\alpha e_{2} \wedge e_{3} \wedge \ldots \wedge e_{n} I\right)=\alpha\left(e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n}\right) I
$$

(this uses a useful GA relation $a \cdot(B I)=(a \wedge B) I)$.

Reciprocal Frames

If we let

$$
E_{n}=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n} \neq 0
$$

we see that $\alpha E_{n} I=1$, so that $\alpha=E_{n}^{-1} I^{-1}$. Thus giving us

Reciprocal Frames

If we let

$$
E_{n}=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n} \neq 0
$$

we see that $\alpha E_{n} I=1$, so that $\alpha=E_{n}^{-1} I^{-1}$. Thus giving us

$$
e^{k}=(-1)^{k+1} e_{1} \wedge e_{2} \wedge \ldots \wedge \check{e}_{k} \wedge \ldots \wedge e_{n} E_{n}^{-1}
$$

Reciprocal Frames

If we let

$$
E_{n}=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n} \neq 0
$$

we see that $\alpha E_{n} I=1$, so that $\alpha=E_{n}^{-1} I^{-1}$. Thus giving us

$$
e^{k}=(-1)^{k+1} e_{1} \wedge e_{2} \wedge \ldots \wedge \check{e}_{k} \wedge \ldots \wedge e_{n} E_{n}^{-1}
$$

where the \check{e}_{k} notation indicates that e_{k} is missing from the blade.

Reciprocal Frames

If we let

$$
E_{n}=e_{1} \wedge e_{2} \wedge \ldots \wedge e_{n} \neq 0
$$

we see that $\alpha E_{n} I=1$, so that $\alpha=E_{n}^{-1} I^{-1}$. Thus giving us

$$
e^{k}=(-1)^{k+1} e_{1} \wedge e_{2} \wedge \ldots \wedge \check{e}_{k} \wedge \ldots \wedge e_{n} E_{n}^{-1}
$$

where the \check{e}_{k} notation indicates that e_{k} is missing from the blade.
These reciprocal frames are remarkably useful!

Exercises 1

(1) Show that $a \cdot(B I)=(a \wedge B) I$. [Hint: make use of the fact that $\left.a \cdot\left(B_{r} I_{n}\right)=\left\langle a B_{r} I_{n}\right\rangle_{n-r-1}\right]$.
(2) For $\left\{f_{1}, f_{2}, f_{3}\right\}=\left\{e_{1}, e_{1}+2 e_{3}, e_{1}+e_{2}+e_{3}\right\}$ show, using the given formulae, that the reciprocal frame is given by

$$
\left\{f^{1}, f^{2}, f^{3}\right\}=\left\{e_{1}-\frac{1}{2}\left(e_{2}+e_{3}\right), \frac{1}{2}\left(e_{3}-e_{2}\right), e_{2}\right\}
$$

[these are the reciprocal frames shown in the earlier pictures]

Exercises 2

(1) Interchanging the role of frame and reciprocal frame, verify that we can write the frame vectors as

$$
\begin{aligned}
& \quad e_{k}=(-1)^{k+1} e^{1} \wedge e^{2} \wedge \ldots \wedge e^{k} \wedge \ldots \wedge e^{n}\left\{E^{n}\right\}^{-1} \\
& \text { where } E^{n}=e^{1} \wedge e^{2} \wedge \ldots \wedge e^{n} \neq 0 .
\end{aligned}
$$

(2) Now show that we can move vectors through each other (changing sign) to give

$$
e_{k}=(-1)^{k-1} e^{n} \wedge e^{n-1} \wedge \ldots \wedge \check{e}^{k} \wedge \ldots \wedge e^{1}\{I V\}
$$

where $\left\{E^{n}\right\}^{-1}=I V$, and V is therefore a volume factor.

Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem of recovering the rotor which rotates between two 3-d non-orthonormal frames $\left\{e_{k}\right\}$ and $\left\{f_{k}\right\}$, ie find R such that

$$
f_{k}=R e_{k} \tilde{R}
$$

Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem of recovering the rotor which rotates between two 3-d non-orthonormal frames $\left\{e_{k}\right\}$ and $\left\{f_{k}\right\}$, ie find R such that

$$
f_{k}=R e_{k} \tilde{R}
$$

It is not too hard to show that R can be written as

$$
R=\beta\left(1+f_{k} e^{k}\right)
$$

where the constant β ensures that $R \tilde{R}=1$.

Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem of recovering the rotor which rotates between two 3-d non-orthonormal frames $\left\{e_{k}\right\}$ and $\left\{f_{k}\right\}$, ie find R such that

$$
f_{k}=R e_{k} \tilde{R}
$$

It is not too hard to show that R can be written as

$$
R=\beta\left(1+f_{k} e^{k}\right)
$$

where the constant β ensures that $R \tilde{R}=1$.
A very easy way of recovering rotations.

The Vector Derivative

A vector x can be represented in terms of coordinates in two ways:

$$
x=x^{k} e_{k} \quad \text { or } \quad x=x_{k} e^{k}
$$

The Vector Derivative

A vector x can be represented in terms of coordinates in two ways:

$$
x=x^{k} e_{k} \quad \text { or } \quad x=x_{k} e^{k}
$$

(Summation implied). Depending on whether we expand in terms of a given frame $\left\{e_{k}\right\}$ or its reciprocal $\left\{e^{k}\right\}$. The coefficients in these two frames are therefore given by

$$
x^{k}=e^{k} \cdot x \quad \text { and } \quad x_{k}=e_{k} \cdot x
$$

The Vector Derivative

A vector x can be represented in terms of coordinates in two ways:

$$
x=x^{k} e_{k} \quad \text { or } \quad x=x_{k} e^{k}
$$

(Summation implied). Depending on whether we expand in terms of a given frame $\left\{e_{k}\right\}$ or its reciprocal $\left\{e^{k}\right\}$. The coefficients in these two frames are therefore given by

$$
x^{k}=e^{k} \cdot x \quad \text { and } \quad x_{k}=e_{k} \cdot x
$$

Now define the following derivative operator which we call the vector derivative

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}} \equiv e^{k} \frac{\partial}{\partial x^{k}}
$$

The Vector Derivative

A vector x can be represented in terms of coordinates in two ways:

$$
x=x^{k} e_{k} \quad \text { or } \quad x=x_{k} e^{k}
$$

(Summation implied). Depending on whether we expand in terms of a given frame $\left\{e_{k}\right\}$ or its reciprocal $\left\{e^{k}\right\}$. The coefficients in these two frames are therefore given by

$$
x^{k}=e^{k} \cdot x \quad \text { and } \quad x_{k}=e_{k} \cdot x
$$

Now define the following derivative operator which we call the vector derivative

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}} \equiv e^{k} \frac{\partial}{\partial x^{k}}
$$

..this is clearly a vector!

The Vector Derivative, cont...

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}}
$$

The Vector Derivative, cont...

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}}
$$

This is a definition so far, but we will now see how this form arises.

The Vector Derivative, cont...

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}}
$$

This is a definition so far, but we will now see how this form arises.

Suppose we have a function acting on vectors, $F(x)$. Using standard definitions of rates of change, we can define the directional derivative of F in the direction of a vector a as

The Vector Derivative, cont...

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}}
$$

This is a definition so far, but we will now see how this form arises.

Suppose we have a function acting on vectors, $F(x)$. Using standard definitions of rates of change, we can define the directional derivative of F in the direction of a vector a as

$$
\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon a)-F(x)}{\epsilon}
$$

The Vector Derivative cont....

Now, suppose we want the directional derivative in the direction of one of our frame vectors, say e_{1}, this is given by

The Vector Derivative cont....

Now, suppose we want the directional derivative in the direction of one of our frame vectors, say e_{1}, this is given by

$$
\lim _{\epsilon \rightarrow 0} \frac{F\left(\left(x^{1}+\epsilon\right) e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)-F\left(x^{1} e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)}{\epsilon}
$$

The Vector Derivative cont....

Now, suppose we want the directional derivative in the direction of one of our frame vectors, say e_{1}, this is given by

$$
\lim _{\epsilon \rightarrow 0} \frac{F\left(\left(x^{1}+\epsilon\right) e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)-F\left(x^{1} e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)}{\epsilon}
$$

which we recognise as

$$
\frac{\partial F(x)}{\partial x^{1}}
$$

The Vector Derivative cont....

Now, suppose we want the directional derivative in the direction of one of our frame vectors, say e_{1}, this is given by

$$
\lim _{\epsilon \rightarrow 0} \frac{F\left(\left(x^{1}+\epsilon\right) e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)-F\left(x^{1} e_{1}+x^{2} e_{2}+x^{3} e_{3}\right)}{\epsilon}
$$

which we recognise as

$$
\frac{\partial F(x)}{\partial x^{1}}
$$

ie the derivative with respect to the first coordinate, keeping the second and third coordinates constant.

Vector Derivative cont.....

So, if we wish to define a gradient operator, ∇, such that $(a \cdot \nabla) F(x)$ gives the directional derivative of F in the a direction, we clearly need:

Vector Derivative cont.....

So, if we wish to define a gradient operator, ∇, such that $(a \cdot \nabla) F(x)$ gives the directional derivative of F in the a direction, we clearly need:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}} \text { for } i=1,2,3
$$

Vector Derivative cont.....

So, if we wish to define a gradient operator, ∇, such that $(a \cdot \nabla) F(x)$ gives the directional derivative of F in the a direction, we clearly need:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}} \text { for } i=1,2,3
$$

...which, since $e_{i} \cdot e^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial x^{x}}$, gives us the previous form of the vector derivative:

Vector Derivative cont.....

So, if we wish to define a gradient operator, ∇, such that $(a \cdot \nabla) F(x)$ gives the directional derivative of F in the a direction, we clearly need:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}} \text { for } i=1,2,3
$$

...which, since $e_{i} \cdot e^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial x^{x}}$, gives us the previous form of the vector derivative:

$$
\nabla=\sum_{k} e^{k} \frac{\partial}{\partial x^{k}}
$$

The Vector Derivative cont....

It follows now that if we $\operatorname{dot} \nabla$ with a, we get the directional derivative in the a direction:

$$
a \cdot \nabla F(x)=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon a)-F(x)}{\epsilon}
$$

The Vector Derivative cont....

It follows now that if we $\operatorname{dot} \nabla$ with a, we get the directional derivative in the a direction:

$$
a \cdot \nabla F(x)=\lim _{\epsilon \rightarrow 0} \frac{F(x+\epsilon a)-F(x)}{\epsilon}
$$

We will see later that the definition of ∇ is independent of the choice of frame.

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.
A Vector Field $J(x)$: it gives ∇J. This is a geometric product

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.
A Vector Field $J(x)$: it gives ∇J. This is a geometric product
Scalar part gives divergence

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.
A Vector Field $J(x)$: it gives ∇J. This is a geometric product
Scalar part gives divergence
Bivector part gives curl

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.
A Vector Field $J(x)$: it gives ∇J. This is a geometric product
Scalar part gives divergence
Bivector part gives curl

$$
\nabla J=\nabla \cdot J+\nabla \wedge J
$$

Operating on Scalar and Vector Fields

Operating on:
A Scalar Field $\phi(x)$: it gives $\nabla \phi$ which is the gradient.
A Vector Field $J(x)$: it gives ∇J. This is a geometric product
Scalar part gives divergence
Bivector part gives curl

$$
\nabla J=\nabla \cdot J+\nabla \wedge J
$$

See later discussions of electromagnetism.

Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors vary with position - the two most commonly used sets in 3-d are:

Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors vary with position - the two most commonly used sets in 3-d are:

$$
\mathbf{r}(r, \theta, \phi)=r e_{r}
$$

$$
\mathbf{r}(\rho, \theta, z)=\rho e_{\rho}+z e_{z}
$$

Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors vary with position - the two most commonly used sets in 3-d are:

$$
\mathbf{r}(\rho, \theta, z)=\rho e_{\rho}+z e_{z}
$$

For spherical polars, our position vector is defined in terms of a length r and two angles $\theta, \phi: \Longrightarrow$ coordinates are (r, θ, ϕ).

Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors vary with position - the two most commonly used sets in 3-d are:

$$
\mathbf{r}(\rho, \theta, z)=\rho e_{\rho}+z e_{z}
$$

For spherical polars, our position vector is defined in terms of a length r and two angles $\theta, \phi: \Longrightarrow$ coordinates are (r, θ, ϕ).
For cylindrical polars, our position vector is defined in terms of two lengths ρ, z and an angle $\phi: \Longrightarrow$ coordinates are $\left(\rho, \phi_{\underline{1}} z\right) \cdot$

Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates $x^{i}, i=1, \ldots, n$, which are functions of the position vector, r .

Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates
$x^{i}, i=1, \ldots, n$, which are functions of the position vector, r .
Of course, we can also write the position vector, r, as a function of the coordinates $\left\{x^{i}\right\}$ (as on previous page).

Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates $x^{i}, i=1, \ldots, n$, which are functions of the position vector, r .

Of course, we can also write the position vector, r, as a function of the coordinates $\left\{x^{i}\right\}$ (as on previous page).

Vary one coordinate while keeping others fixed to create a coordinate curve. We can then create a set of frame vectors, call them $\left\{e_{i}\right\}$, by finding the derivatives along these curves:

Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates $x^{i}, i=1, \ldots, n$, which are functions of the position vector, r .

Of course, we can also write the position vector, r, as a function of the coordinates $\left\{x^{i}\right\}$ (as on previous page).

Vary one coordinate while keeping others fixed to create a coordinate curve. We can then create a set of frame vectors, call them $\left\{e_{i}\right\}$, by finding the derivatives along these curves:

$$
e_{i}(\mathbf{r})=\frac{\partial \mathbf{r}}{\partial x^{i}} \equiv \lim _{\epsilon \rightarrow 0} \frac{\mathbf{r}\left(x^{1}, \ldots, x^{i}+\epsilon, \ldots, x^{n}\right)-\mathbf{r}\left(x^{1}, \ldots, x^{i}, \ldots, x^{n}\right)}{\epsilon}
$$

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}}
$$

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}}
$$

It then follows that

$$
\left(e_{i} \cdot \nabla\right) x^{j} \equiv e_{i} \cdot\left(\nabla x^{j}\right)=\frac{\partial x^{j}}{\partial x^{i}}=\delta_{i}^{j}
$$

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}}
$$

It then follows that

$$
\left(e_{i} \cdot \nabla\right) x^{j} \equiv e_{i} \cdot\left(\nabla x^{j}\right)=\frac{\partial x^{j}}{\partial x^{i}}=\delta_{i}^{j}
$$

Therefore, using the definition of the reciprocal frame $\left(e_{i} \cdot e^{j}=\delta_{i}^{j}\right)$, we can deduce that

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}}
$$

It then follows that

$$
\left(e_{i} \cdot \nabla\right) x^{j} \equiv e_{i} \cdot\left(\nabla x^{j}\right)=\frac{\partial x^{j}}{\partial x^{i}}=\delta_{i}^{j}
$$

Therefore, using the definition of the reciprocal frame
$\left(e_{i} \cdot e^{j}=\delta_{i}^{j}\right)$, we can deduce that

$$
e^{j}=\nabla x^{j}
$$

Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the e_{i} direction is $e_{i} \cdot \nabla$, which is also the partial derivative wrt the x^{i} coordinate:

$$
e_{i} \cdot \nabla=\frac{\partial}{\partial x^{i}}
$$

It then follows that

$$
\left(e_{i} \cdot \nabla\right) x^{j} \equiv e_{i} \cdot\left(\nabla x^{j}\right)=\frac{\partial x^{j}}{\partial x^{i}}=\delta_{i}^{j}
$$

Therefore, using the definition of the reciprocal frame $\left(e_{i} \cdot e^{j}=\delta_{i}^{j}\right)$, we can deduce that

$$
e^{j}=\nabla x^{j}
$$

Thus, we can construct a second, reciprocal, frame from the coordinates using the vector derivative

Curvilinear Coordinates : Summary

Given coordinates $\left\{x^{i}, i=1, \ldots, n\right\}$, which any position vector, \mathbf{r} [note, use boldface to distinguish from distance from origin], can be expressed in terms of, we can define a set of frame vectors as

Curvilinear Coordinates : Summary

Given coordinates $\left\{x^{i}, i=1, \ldots, n\right\}$, which any position vector, \mathbf{r} [note, use boldface to distinguish from distance from origin], can be expressed in terms of, we can define a set of frame vectors as

$$
e_{i}(\mathbf{r})=\frac{\partial \mathbf{r}}{\partial x^{i}}
$$

Curvilinear Coordinates : Summary

Given coordinates $\left\{x^{i}, i=1, \ldots, n\right\}$, which any position vector, \mathbf{r} [note, use boldface to distinguish from distance from origin], can be expressed in terms of, we can define a set of frame vectors as

$$
e_{i}(\mathbf{r})=\frac{\partial \mathbf{r}}{\partial x^{i}}
$$

We can then construct a second, reciprocal, frame from the coordinates via

Curvilinear Coordinates : Summary

Given coordinates $\left\{x^{i}, i=1, \ldots, n\right\}$, which any position vector, \mathbf{r} [note, use boldface to distinguish from distance from origin], can be expressed in terms of, we can define a set of frame vectors as

$$
e_{i}(\mathbf{r})=\frac{\partial \mathbf{r}}{\partial x^{i}}
$$

We can then construct a second, reciprocal, frame from the coordinates via

$$
e^{j}=\nabla x^{j} \quad\left[\text { note }: \quad \nabla \wedge e^{j}=\nabla \wedge \nabla x^{j}=0\right]
$$

Curvilinear Coordinates : Summary

Given coordinates $\left\{x^{i}, i=1, \ldots, n\right\}$, which any position vector, \mathbf{r} [note, use boldface to distinguish from distance from origin], can be expressed in terms of, we can define a set of frame vectors as

$$
e_{i}(\mathbf{r})=\frac{\partial \mathbf{r}}{\partial x^{i}}
$$

We can then construct a second, reciprocal, frame from the coordinates via

$$
e^{j}=\nabla x^{j} \quad\left[\text { note }: \quad \nabla \wedge e^{j}=\nabla \wedge \nabla x^{j}=0\right]
$$

We see therefore that the vector derivative is crucial in relating coordinates to frames - and we will see how this simplifies manipulations in curvilinear coordinates.

Div, Grad, Curl in Curvilinear Coordinates

Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Div, Grad, Curl in Curvilinear Coordinates

Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Divergence of a Vector Function, J

$$
\nabla \cdot J=e^{i} \frac{\partial}{\partial x^{i}} \cdot\left(J^{j} e_{j}\right)=e^{i} \cdot \frac{\partial\left(J^{j} e_{j}\right)}{\partial x^{i}} \quad[\text { scalar }]
$$

Div, Grad, Curl in Curvilinear Coordinates

Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Divergence of a Vector Function, J

$$
\nabla \cdot J=e^{i} \frac{\partial}{\partial x^{i}} \cdot\left(J^{j} e_{j}\right)=e^{i} \cdot \frac{\partial\left(J^{j} e_{j}\right)}{\partial x^{i}} \quad[\text { scalar }]
$$

Curl of a Vector Function, J

$$
\nabla \wedge J=e^{i} \frac{\partial}{\partial x^{i}} \wedge\left(J^{j} e_{j}\right)=e^{i} \wedge \frac{\partial\left(J^{j} e_{j}\right)}{\partial x^{i}} \quad[\text { bivector }]
$$

Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way which makes them easier to relate to the standard expressions for derivatives in curvilinear coordinates.

Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way which makes them easier to relate to the standard expressions for derivatives in curvilinear coordinates.

Divergence

$$
\nabla \cdot J=\nabla \cdot\left(J^{i} e_{i}\right)=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(\nabla \cdot e_{i}\right)
$$

Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way which makes them easier to relate to the standard expressions for derivatives in curvilinear coordinates.

Divergence

$$
\nabla \cdot J=\nabla \cdot\left(J^{i} e_{i}\right)=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(\nabla \cdot e_{i}\right)
$$

(this is a simple application of the chain rule)

Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way which makes them easier to relate to the standard expressions for derivatives in curvilinear coordinates.

Divergence

$$
\nabla \cdot J=\nabla \cdot\left(J^{i} e_{i}\right)=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(\nabla \cdot e_{i}\right)
$$

(this is a simple application of the chain rule)
Now, take the pseudovector ($n-1$-blade)
$P=(-1)^{k-1} e^{n} \wedge e^{n-1} \wedge \ldots \wedge e^{k} \wedge \ldots \wedge e^{1}$, and recall that $e_{i}=$ PIV [See Exercises 2]. So that (where $\langle X\rangle$ denotes the scalar part of X)

Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way which makes them easier to relate to the standard expressions for derivatives in curvilinear coordinates.

Divergence

$$
\nabla \cdot J=\nabla \cdot\left(J^{i} e_{i}\right)=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(\nabla \cdot e_{i}\right)
$$

(this is a simple application of the chain rule)
Now, take the pseudovector ($n-1$-blade)
$P=(-1)^{k-1} e^{n} \wedge e^{n-1} \wedge \ldots \wedge e^{k} \wedge \ldots \wedge e^{1}$, and recall that $e_{i}=$ PIV [See Exercises 2]. So that (where $\langle X\rangle$ denotes the scalar part of X)

$$
\nabla \cdot e_{i}=\langle\nabla(P I V)\rangle=\langle(\nabla P) I V\rangle+\langle P I(\nabla V)\rangle
$$

Div, Grad, Curl cont....

After some manipulation (which will be outlined in the following exercises) we are able to write

$$
\begin{gathered}
\nabla \cdot J=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(e_{i} \cdot \nabla(\ln V)\right) \\
=e_{i} \cdot\left(\nabla J^{i}\right)+J \cdot(\nabla(\ln V))=\frac{1}{V} \frac{\partial}{\partial x^{i}}\left(V J^{i}\right)
\end{gathered}
$$

Div, Grad, Curl cont....

After some manipulation (which will be outlined in the following exercises) we are able to write

$$
\begin{gathered}
\nabla \cdot J=e_{i} \cdot\left(\nabla J^{i}\right)+J^{i}\left(e_{i} \cdot \nabla(\ln V)\right) \\
=e_{i} \cdot\left(\nabla J^{i}\right)+J \cdot(\nabla(\ln V))=\frac{1}{V} \frac{\partial}{\partial x^{i}}\left(V J^{i}\right) \\
\nabla \cdot J=\frac{1}{V} \frac{\partial}{\partial x^{i}}\left(V J^{i}\right)
\end{gathered}
$$

Div, Grad, Curl cont....

We therefore have the following expressions: Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Div, Grad, Curl cont....

We therefore have the following expressions: Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Divergence of a Vector Function, J

$$
\nabla \cdot J=\frac{1}{V} \frac{\partial}{\partial x^{i}}\left(V J^{i}\right) \quad[\text { scalar }]
$$

Div, Grad, Curl cont....

We therefore have the following expressions: Gradient of a Scalar Function, ψ

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}} \quad[\text { vector }]
$$

Divergence of a Vector Function, J

$$
\nabla \cdot J=\frac{1}{V} \frac{\partial}{\partial x^{i}}\left(V J^{i}\right) \quad[\text { scalar }]
$$

Curl of a Vector Function, J

$$
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i} \quad[\text { bivector }]
$$

Exercises 3

(1) Since $I V$ is a pseudoscalar, show that

$$
\langle(\nabla P) I V\rangle=\langle(\nabla \wedge P) I V)\rangle
$$

(2) Using the fact that $e_{i}=P I V$, show that

$$
P I(\nabla V)=e_{i} \nabla(\ln V)
$$

(3) Verify that $\nabla \wedge a \wedge b=(\nabla \wedge a) \wedge b-a \wedge(\nabla \wedge b)$, and then, using our previous result of $\nabla \wedge e^{i}=0$, show that

$$
\nabla \wedge P=0
$$

and therefore that

$$
\nabla \cdot e_{i}=e_{i} \cdot \nabla(\ln V)
$$

Exercises 4

(1) By expanding $\nabla \wedge J$ as

$$
\nabla \wedge J=\nabla \wedge\left(J_{i} e^{i}\right)=\dot{\nabla} \wedge\left(\dot{J}_{i} e^{i}\right)+\dot{\nabla} \wedge\left(J_{i} e^{i}\right)
$$

explain how we obtain the result $\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}$

An Example: Spherical Polars in 3d

Recall our coordinates are (r, θ, ϕ), and we also have an orthogonal set of unit vectors ($\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$) as shown in the diagram. Thus, we can define a frame via $e_{i}=\frac{\partial r}{\partial x^{i}}$ to be

An Example: Spherical Polars in 3d

Recall our coordinates are (r, θ, ϕ), and we also have an orthogonal set of unit vectors ($\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$) as shown in the diagram. Thus, we can define a frame via $e_{i}=\frac{\partial r}{\partial x^{i}}$ to be

$$
e_{r}=\frac{\partial \mathbf{r}}{\partial r}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial r}=\hat{e}_{r}
$$

An Example: Spherical Polars in 3d

Recall our coordinates are (r, θ, ϕ), and we also have an orthogonal set of unit vectors ($\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$) as shown in the diagram. Thus, we can define a frame via $e_{i}=\frac{\partial r}{\partial x^{i}}$ to be

$$
\begin{gathered}
e_{r}=\frac{\partial \mathbf{r}}{\partial r}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial r}=\hat{e}_{r} \\
e_{\theta}=\frac{\partial \mathbf{r}}{\partial \theta}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial \theta}=r \frac{\partial \hat{e}_{r}}{\partial \theta}=r \hat{e}_{\theta}
\end{gathered}
$$

An Example: Spherical Polars in 3d

Recall our coordinates are (r, θ, ϕ), and we also have an orthogonal set of unit vectors $\left(\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}\right)$ as shown in the diagram. Thus, we can define a frame via $e_{i}=\frac{\partial r}{\partial x^{i}}$ to be

$$
\begin{gathered}
e_{r}=\frac{\partial \mathbf{r}}{\partial r}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial r}=\hat{e}_{r} \\
e_{\theta}=\frac{\partial \mathbf{r}}{\partial \theta}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial \theta}=r \frac{\partial \hat{e}_{r}}{\partial \theta}=r \hat{e}_{\theta} \\
e_{\phi}=\frac{\partial \mathbf{r}}{\partial \phi}=\frac{\partial\left(r \hat{e}_{r}\right)}{\partial \phi}=r \frac{\partial \hat{e}_{r}}{\partial \phi}=r \frac{\partial\left(\cos \theta \hat{e}_{z}+\sin \theta \hat{e}_{\rho}\right)}{\partial \phi}=r \sin \theta \hat{e}_{\phi}
\end{gathered}
$$

An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that the reciprocal vectors are given by

An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that the reciprocal vectors are given by

$$
e^{r}=\hat{e}_{r} \quad e^{\theta}=\frac{1}{r} \hat{e}_{\theta} \quad e^{\phi}=\frac{1}{r \sin \theta} \hat{e}_{\phi}
$$

(check that $\left.e^{i} \cdot e_{j}=\delta_{j}^{i}\right)$.

An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that the reciprocal vectors are given by

$$
e^{r}=\hat{e}_{r} \quad e^{\theta}=\frac{1}{r} \hat{e}_{\theta} \quad e^{\phi}=\frac{1}{r \sin \theta} \hat{e}_{\phi}
$$

(check that $e^{i} \cdot e_{j}=\delta_{j}^{i}$).
Now we can use our previous formulae to give us grad, div and curl in spherical polars.

An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that the reciprocal vectors are given by

$$
e^{r}=\hat{e}_{r} \quad e^{\theta}=\frac{1}{r} \hat{e}_{\theta} \quad e^{\phi}=\frac{1}{r \sin \theta} \hat{e}_{\phi}
$$

(check that $e^{i} \cdot e_{j}=\delta_{j}^{i}$).
Now we can use our previous formulae to give us grad, div and curl in spherical polars.

Gradient

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}}=\frac{\partial \psi}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{e}_{\phi}
$$

An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that the reciprocal vectors are given by

$$
e^{r}=\hat{e}_{r} \quad e^{\theta}=\frac{1}{r} \hat{e}_{\theta} \quad e^{\phi}=\frac{1}{r \sin \theta} \hat{e}_{\phi}
$$

(check that $e^{i} \cdot e_{j}=\delta_{j}^{i}$).
Now we can use our previous formulae to give us grad, div and curl in spherical polars.
Gradient

$$
\nabla \psi=e^{i} \frac{\partial \psi}{\partial x^{i}}=\frac{\partial \psi}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{e}_{\phi}
$$

Which agrees with the formula given in tables etc.

An Example: Spherical Polars in 3d cont...

Divergence

$$
\begin{aligned}
\nabla \cdot J=\frac{1}{V} \frac{\partial\left(V J^{i}\right)}{\partial x^{i}} & =\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{r}\right)}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\theta}\right)}{\partial \theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\phi}\right)}{\partial \phi} \\
& =\frac{1}{r^{2}} \frac{\partial\left(r^{2} J^{r}\right)}{\partial r}+\frac{1}{\sin \theta} \frac{\partial\left(\sin \theta J^{\theta}\right)}{\partial \theta}+\frac{\partial J^{\phi}}{\partial \phi}
\end{aligned}
$$

An Example: Spherical Polars in 3d cont...

Divergence

$$
\begin{aligned}
\nabla \cdot J=\frac{1}{V} \frac{\partial\left(V J^{i}\right)}{\partial x^{i}} & =\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{r}\right)}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\theta}\right)}{\partial \theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\phi}\right)}{\partial \phi} \\
& =\frac{1}{r^{2}} \frac{\partial\left(r^{2} J^{r}\right)}{\partial r}+\frac{1}{\sin \theta} \frac{\partial\left(\sin \theta J^{\theta}\right)}{\partial \theta}+\frac{\partial J^{\phi}}{\partial \phi}
\end{aligned}
$$

Since $V=-r^{2} \sin \theta$ (see exercises).

An Example: Spherical Polars in 3d cont...

Divergence

$$
\begin{aligned}
\nabla \cdot J=\frac{1}{V} \frac{\partial\left(V J^{i}\right)}{\partial x^{i}} & =\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{r}\right)}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\theta}\right)}{\partial \theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\phi}\right)}{\partial \phi} \\
& =\frac{1}{r^{2}} \frac{\partial\left(r^{2} J^{r}\right)}{\partial r}+\frac{1}{\sin \theta} \frac{\partial\left(\sin \theta J^{\theta}\right)}{\partial \theta}+\frac{\partial J^{\phi}}{\partial \phi}
\end{aligned}
$$

Since $V=-r^{2} \sin \theta$ (see exercises).
Now, note that
$J=J^{r} e_{r}+J^{\theta} e_{\theta}+J^{\phi} e_{\phi}=J^{r} \hat{e}_{r}+J^{\theta}\left(r \hat{e}_{\theta}\right)+J^{\phi}(r \sin \theta) \hat{e}_{\phi}=\hat{J}_{r} \hat{e}_{r}+\hat{J}_{\theta} \hat{e}_{\theta}+\hat{J}_{\phi} \hat{e}_{\phi}$

An Example: Spherical Polars in 3d cont...

Divergence

$$
\begin{aligned}
\nabla \cdot J=\frac{1}{V} \frac{\partial\left(V J^{i}\right)}{\partial x^{i}} & =\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{r}\right)}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\theta}\right)}{\partial \theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial\left(r^{2} \sin \theta J^{\phi}\right)}{\partial \phi} \\
& =\frac{1}{r^{2}} \frac{\partial\left(r^{2} J^{r}\right)}{\partial r}+\frac{1}{\sin \theta} \frac{\partial\left(\sin \theta J^{\theta}\right)}{\partial \theta}+\frac{\partial J^{\phi}}{\partial \phi}
\end{aligned}
$$

Since $V=-r^{2} \sin \theta$ (see exercises).
Now, note that
$J=J^{r} e_{r}+J^{\theta} e_{\theta}+J^{\phi} e_{\phi}=J^{r} \hat{e}_{r}+J^{\theta}\left(r \hat{e}_{\theta}\right)+J^{\phi}(r \sin \theta) \hat{e}_{\phi}=\hat{J}_{r} \hat{e}_{r}+\hat{J}_{\theta} \hat{e}_{\theta}+\hat{J}_{\phi} \hat{e}_{\phi}$
Which agrees with the formula given in tables etc.

$$
\nabla \cdot J=\frac{1}{r^{2}} \frac{\partial\left(r^{2} \hat{J}_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta \hat{J}_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial \hat{J}_{\phi}}{\partial \phi}
$$

An Example: Spherical Polars in 3d cont...

Curl

$$
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}=
$$

$$
\left[\frac{\partial J_{r}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial r}\right]\left(e^{r} \wedge e^{\theta}\right)+\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)+\left[\frac{\partial J_{r}}{\partial \phi}-\frac{\partial J_{\phi}}{\partial r}\right]\left(e^{\phi} \wedge e^{r}\right)
$$

An Example: Spherical Polars in 3d cont...

Curl

$$
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}=
$$

$$
\left[\frac{\partial J_{r}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial r}\right]\left(e^{r} \wedge e^{\theta}\right)+\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)+\left[\frac{\partial J_{r}}{\partial \phi}-\frac{\partial J_{\phi}}{\partial r}\right]\left(e^{\phi} \wedge e^{r}\right)
$$

Now look at the second component, noting that $e^{\theta} \wedge e^{\phi}=\frac{1}{r} \hat{e}_{\theta} \wedge \frac{1}{r \sin \theta} \hat{e}_{\phi}=\frac{1}{r^{2} \sin \theta} \hat{e}_{r} I$,

An Example: Spherical Polars in 3d cont...

Curl

$$
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}=
$$

$$
\left[\frac{\partial J_{r}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial r}\right]\left(e^{r} \wedge e^{\theta}\right)+\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)+\left[\frac{\partial J_{r}}{\partial \phi}-\frac{\partial J_{\phi}}{\partial r}\right]\left(e^{\phi} \wedge e^{r}\right)
$$

Now look at the second component, noting that $e^{\theta} \wedge e^{\phi}=\frac{1}{r} \hat{e}_{\theta} \wedge \frac{1}{r \sin \theta} \hat{e}_{\phi}=\frac{1}{r^{2} \sin \theta} \hat{e}_{r} I$,

$$
\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)=\left[\frac{\partial\left(r \sin \theta \hat{J}_{\phi}\right)}{\partial \theta}-\frac{\partial\left(r \hat{J}_{\theta}\right)}{\partial \phi}\right] \frac{1}{r^{2} \sin \theta} \hat{e}_{r} I
$$

An Example: Spherical Polars in 3d cont...

Curl

$$
\begin{gathered}
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}= \\
{\left[\frac{\partial J_{r}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial r}\right]\left(e^{r} \wedge e^{\theta}\right)+\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)+\left[\frac{\partial J_{r}}{\partial \phi}-\frac{\partial J_{\phi}}{\partial r}\right]\left(e^{\phi} \wedge e^{r}\right)}
\end{gathered}
$$

Now look at the second component, noting that $e^{\theta} \wedge e^{\phi}=\frac{1}{r} \hat{e}_{\theta} \wedge \frac{1}{r \sin \theta} \hat{e}_{\phi}=\frac{1}{r^{2} \sin \theta} \hat{e}_{r} I$,

$$
\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)=\left[\frac{\partial\left(r \sin \theta \hat{J}_{\phi}\right)}{\partial \theta}-\frac{\partial\left(r \hat{J}_{\theta}\right)}{\partial \phi}\right] \frac{1}{r^{2} \sin \theta} \hat{e}_{r} I
$$

which can be written to agree with conventional tabulated form (though we have a bivector and not a vector):

An Example: Spherical Polars in 3d cont...

Curl

$$
\nabla \wedge J=\left(\nabla J_{i}\right) \wedge e^{i}=
$$

$$
\left[\frac{\partial J_{r}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial r}\right]\left(e^{r} \wedge e^{\theta}\right)+\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)+\left[\frac{\partial J_{r}}{\partial \phi}-\frac{\partial J_{\phi}}{\partial r}\right]\left(e^{\phi} \wedge e^{r}\right)
$$

Now look at the second component, noting that $e^{\theta} \wedge e^{\phi}=\frac{1}{r} \hat{e}_{\theta} \wedge \frac{1}{r \sin \theta} \hat{e}_{\phi}=\frac{1}{r^{2} \sin \theta} \hat{e}_{r} I$,

$$
\left[\frac{\partial J_{\phi}}{\partial \theta}-\frac{\partial J_{\theta}}{\partial \phi}\right]\left(e^{\theta} \wedge e^{\phi}\right)=\left[\frac{\partial\left(r \sin \theta \hat{J}_{\phi}\right)}{\partial \theta}-\frac{\partial\left(r \hat{J}_{\theta}\right)}{\partial \phi}\right] \frac{1}{r^{2} \sin \theta} \hat{e}_{r} I
$$

which can be written to agree with conventional tabulated form (though we have a bivector and not a vector):

$$
\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta \hat{J}_{\phi}\right)}{\partial \theta}-\frac{\partial\left(\hat{J}_{\theta}\right)}{\partial \phi}\right]_{r} \hat{e}_{r} I
$$

Exercises 5

(1) For 3d spherical polars, show that $V=-r^{2} \sin \theta$, where

$$
V I=\left(E^{n}\right)^{-1} \text { and } E^{n}=e^{r} \wedge e^{\theta} \wedge e^{\phi}
$$

(2) Show that the $e^{\phi} \wedge e^{r}$ component of $\nabla \wedge J$ can be written as:

$$
\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial\left(\hat{J}_{r}\right)}{\partial \phi}-\frac{\partial\left(r \hat{J}_{\phi}\right)}{\partial r}\right] \hat{e}_{\theta} I
$$

(3) Show that the $e^{r} \wedge e^{\theta}$ component on $\nabla \wedge J$ can be written as:

$$
\frac{1}{r}\left[\frac{1}{r} \frac{\partial\left(r \hat{J}_{\theta}\right)}{\partial r}-\frac{\partial\left(\hat{J}_{r}\right)}{\partial \theta}\right] \hat{e}_{\phi} I
$$

Check these against standard tabulated formulae.

Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

$$
h_{i}=\left|\frac{\partial \mathbf{r}}{\partial x^{i}}\right|
$$

Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

$$
h_{i}=\left|\frac{\partial \mathbf{r}}{\partial x^{i}}\right|
$$

In our language we therefore have $h_{i}=\left|e_{i}\right|$, ie simply the moduli of the frame vectors defined by the coordinates.

Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

$$
h_{i}=\left|\frac{\partial \mathbf{r}}{\partial x^{i}}\right|
$$

In our language we therefore have $h_{i}=\left|e_{i}\right|$, ie simply the moduli of the frame vectors defined by the coordinates.

All expressions of div, grad, curl etc in terms of the $h_{i} s$, can then be directly related to the expressions we derive in GA.

Summary

We have

- Defined the concept of a Reciprocal Frame

Summary

We have

- Defined the concept of a Reciprocal Frame
- Shown how to construct Reciprocal Frames

Summary

We have

- Defined the concept of a Reciprocal Frame
- Shown how to construct Reciprocal Frames
- Using reciprocal frames, defined and motivated the form of the Vector Derivative

Summary

We have

- Defined the concept of a Reciprocal Frame
- Shown how to construct Reciprocal Frames
- Using reciprocal frames, defined and motivated the form of the Vector Derivative
- Shown how to relate coordinates, frame vectors and reciprocal frame vectors in curvilinear coordinate systems.

