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Reciprocal Frames

Many problems in mathematics, physics and engineering
require a treatment of non-orthonormal frames.

Take a set of n linearly independent vectors {ek}; these are not
necessarily orthogonal nor of unit length.

Can we find a second set of vectors (in the same space), call
these {ek}, such that

ei·ej = δi
j
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Reciprocal Frames
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Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any
vector a can be written as a = akek ≡ ∑ akek (ie we are adopting
the convention that repeated indices are summed over), we
have

ek ·a = ek ·(ajej) = aj(ek ·ej) = ajδk
j = ak

Similarly, since we can also write a = akek ≡ ∑ akek

ek ·a = ek ·(ajej) = aj(ek ·ej) = ajδ
j
k = ak

Thus we would be able to recover the components of a given
vector in a similar way to that used for orthonormal frames.

So how do we find a reciprocal frame?
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Reciprocal Frames cont....

We need, for example, e1 to be orthogonal to the set of vectors
{e2, e3, ..., en}. ie e1 must be perpendicular to the hyperplane
e2∧e3∧....∧en.

We find this by dualisation, ie multiplication by I [note: I is the
n-d pseudoscalar for our space]. We form e1 via

e1 = αe2∧e3∧...∧enI

α is a scalar found by dotting with e1:

e1·e1 = 1 = e1·(αe2∧e3∧...∧enI) = α(e1∧e2∧...∧en)I

(this uses a useful GA relation a·(BI) = (a∧B)I).
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Reciprocal Frames ....

If we let
En = e1∧e2∧...∧en 6= 0

we see that αEnI = 1, so that α = E−1
n I−1. Thus giving us

ek = (−1)k+1e1∧e2∧...∧ěk∧...∧enE−1
n

where the ěk notation indicates that ek is missing from the blade.

These reciprocal frames are remarkably useful!
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Exercises 1

1 Show that a·(BI) = (a∧B)I. [Hint: make use of the fact that
a·(BrIn) = 〈aBrIn〉n−r−1].

2 For {f1, f2, f3} = {e1, e1 + 2e3, e1 + e2 + e3} show, using
the given formulae, that the reciprocal frame is given by

{f 1, f 2, f 3} = {e1 −
1
2
(e2 + e3),

1
2
(e3 − e2), e2}

[these are the reciprocal frames shown in the earlier
pictures]
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Exercises 2

1 Interchanging the role of frame and reciprocal frame,
verify that we can write the frame vectors as

ek = (−1)k+1e1∧e2∧...∧ěk∧...∧en{En}−1

where En = e1∧e2∧...∧en 6= 0.

2 Now show that we can move vectors through each other
(changing sign) to give

ek = (−1)k−1en∧en−1∧...∧ěk∧...∧e1{IV}

where {En}−1 = IV, and V is therefore a volume factor.
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Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem
of recovering the rotor which rotates between two 3-d
non-orthonormal frames {ek} and {fk}, ie find R such that

fk = RekR̃

It is not too hard to show that R can be written as

R = β(1 + fkek)

where the constant β ensures that RR̃ = 1.

A very easy way of recovering rotations.
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The Vector Derivative

A vector x can be represented in terms of coordinates in two
ways:

x = xkek or x = xkek

(Summation implied). Depending on whether we expand in
terms of a given frame {ek} or its reciprocal {ek}. The
coefficients in these two frames are therefore given by

xk = ek ·x and xk = ek ·x

Now define the following derivative operator which we call the
vector derivative

∇ = ∑
k

ek ∂

∂xk ≡ ek ∂

∂xk

..this is clearly a vector!
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The Vector Derivative, cont...

∇ = ∑
k

ek ∂

∂xk

This is a definition so far, but we will now see how this form
arises.

Suppose we have a function acting on vectors, F(x). Using
standard definitions of rates of change, we can define the
directional derivative of F in the direction of a vector a as

lim
ε→0

F(x + εa)− F(x)
ε
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The Vector Derivative cont....

Now, suppose we want the directional derivative in the
direction of one of our frame vectors, say e1, this is given by

lim
ε→0

F((x1 + ε)e1 + x2e2 + x3e3)− F(x1e1 + x2e2 + x3e3)

ε

which we recognise as
∂F(x)

∂x1

ie the derivative with respect to the first coordinate, keeping
the second and third coordinates constant.
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Vector Derivative cont.....

So, if we wish to define a gradient operator, ∇, such that
(a·∇)F(x) gives the directional derivative of F in the a
direction, we clearly need:

ei·∇ =
∂

∂xi for i = 1, 2, 3

...which, since ei·ej ∂
∂xj =

∂
∂xi , gives us the previous form of the

vector derivative:

∇ = ∑
k

ek ∂

∂xk
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The Vector Derivative cont....

It follows now that if we dot ∇ with a, we get the directional
derivative in the a direction:

a·∇ F(x) = lim
ε→0

F(x + εa)− F(x)
ε

We will see later that the definition of ∇ is independent of the
choice of frame.
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Operating on Scalar and Vector Fields

Operating on:

A Scalar Field φ(x): it gives ∇φ which is the gradient.

A Vector Field J(x): it gives ∇J. This is a geometric product

Scalar part gives divergence

Bivector part gives curl

∇J = ∇·J +∇∧J

See later discussions of electromagnetism.
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Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors
vary with position – the two most commonly used sets in 3-d
are:

r(r, θ, φ) = rer r(ρ, θ, z) = ρeρ + zez

For spherical polars, our position vector is defined in terms of a
length r and two angles θ, φ: =⇒ coordinates are (r, θ, φ).
For cylindrical polars, our position vector is defined in terms of
two lengths ρ, z and an angle φ: =⇒ coordinates are (ρ, φ, z).
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Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates
xi, i = 1, ..., n, which are functions of the position vector, r.

Of course, we can also write the position vector, r, as a function
of the coordinates {xi} (as on previous page).

Vary one coordinate while keeping others fixed to create a
coordinate curve. We can then create a set of frame vectors, call
them {ei}, by finding the derivatives along these curves:

ei(r) =
∂r
∂xi ≡ lim

ε→0

r(x1, ..., xi + ε, ..., xn)− r(x1, ..., xi, ..., xn)

ε
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ei direction is
ei·∇, which is also the partial derivative wrt the xi coordinate:

ei·∇ =
∂

∂xi

It then follows that

(ei·∇)xj ≡ ei·(∇xj) =
∂xj

∂xi = δ
j
i

Therefore, using the definition of the reciprocal frame
(ei·ej = δ

j
i), we can deduce that

ej = ∇xj

Thus, we can construct a second, reciprocal, frame from the
coordinates using the vector derivative
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(ei·ej = δ

j
i), we can deduce that

ej = ∇xj

Thus, we can construct a second, reciprocal, frame from the
coordinates using the vector derivative
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Curvilinear Coordinates : Summary

Given coordinates {xi, i = 1, ..., n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as

ei(r) =
∂r
∂xi

We can then construct a second, reciprocal, frame from the
coordinates via

ej = ∇xj [note : ∇∧ej = ∇∧∇xj = 0]

We see therefore that the vector derivative is crucial in relating
coordinates to frames – and we will see how this simplifies
manipulations in curvilinear coordinates.
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Div, Grad, Curl in Curvilinear Coordinates

Gradient of a Scalar Function, ψ

∇ψ = ei ∂ψ

∂xi [vector]

Divergence of a Vector Function, J

∇·J = ei ∂

∂xi ·(J
jej) = ei·

∂(Jjej)

∂xi [scalar]

Curl of a Vector Function, J

∇∧J = ei ∂

∂xi∧(J
jej) = ei∧

∂(Jjej)

∂xi [bivector]
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Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way
which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

Divergence

∇·J = ∇·(Jiei) = ei·(∇Ji) + Ji(∇·ei)

(this is a simple application of the chain rule)

Now, take the pseudovector (n− 1-blade)
P = (−1)k−1en∧en−1∧...∧ěk∧...∧e1, and recall that ei = PIV [See
Exercises 2]. So that (where 〈X〉 denotes the scalar part of X)

∇·ei = 〈∇(PIV)〉 = 〈(∇P)IV〉+ 〈PI(∇V)〉
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Div, Grad, Curl cont....

After some manipulation (which will be outlined in the
following exercises) we are able to write

∇·J = ei·(∇Ji) + Ji(ei·∇(ln V))

= ei·(∇Ji) + J·(∇(ln V)) =
1
V

∂

∂xi (VJi)

∇·J = 1
V

∂

∂xi (VJi)
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Div, Grad, Curl cont....

We therefore have the following expressions: Gradient of a
Scalar Function, ψ

∇ψ = ei ∂ψ

∂xi [vector]

Divergence of a Vector Function, J

∇·J = 1
V

∂

∂xi (VJi) [scalar]

Curl of a Vector Function, J

∇∧J = (∇Ji)∧ei [bivector]
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Div, Grad, Curl cont....
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Exercises 3

1 Since IV is a pseudoscalar, show that

〈(∇P)IV〉 = 〈(∇∧P)IV)〉

2 Using the fact that ei = PIV, show that

PI(∇V) = ei∇(ln V)

3 Verify that ∇∧a∧b = (∇∧a)∧b− a∧(∇∧b) ,
and then, using our previous result of ∇∧ei = 0, show that

∇∧P = 0

and therefore that

∇·ei = ei·∇(ln V)
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Exercises 4

1 By expanding ∇∧J as

∇∧J = ∇∧(Jiei) = ∇̇∧(J̇iei) + ∇̇∧(Jiėi)

explain how we obtain the result ∇∧J = (∇Ji)∧ei
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An Example: Spherical Polars in 3d

Recall our coordinates are (r, θ, φ), and we also have an
orthogonal set of unit vectors (êr, êθ , êφ) as shown in the
diagram. Thus, we can define a frame via ei =

∂r
∂xi to be

er =
∂r
∂r

=
∂(rêr)

∂r
= êr

eθ =
∂r
∂θ

=
∂(rêr)

∂θ
= r

∂êr

∂θ
= rêθ

eφ =
∂r
∂φ

=
∂(rêr)

∂φ
= r

∂êr

∂φ
= r

∂(cos θêz + sin θêρ)

∂φ
= r sin θêφ
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diagram. Thus, we can define a frame via ei =

∂r
∂xi to be

er =
∂r
∂r

=
∂(rêr)
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An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

er = êr eθ =
1
r

êθ eφ =
1

r sin θ
êφ

(check that ei·ej = δi
j).

Now we can use our previous formulae to give us grad, div
and curl in spherical polars.

Gradient

∇ψ = ei ∂ψ

∂xi =
∂ψ

∂r
êr +

1
r

∂ψ

∂θ
êθ +

1
r sin θ

∂ψ

∂φ
êφ

Which agrees with the formula given in tables etc.
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êφ

Which agrees with the formula given in tables etc.

93 / 110



An Example: Spherical Polars in 3d cont...

Divergence

∇·J = 1
V

∂(VJi)

∂xi =
1

r2 sin θ

∂(r2 sin θJr)

∂r
+

1
r2 sin θ

∂(r2 sin θJθ)

∂θ
+

1
r2 sin θ

∂(r2 sin θJφ)

∂φ

=
1
r2

∂(r2Jr)

∂r
+

1
sin θ

∂(sin θJθ)

∂θ
+

∂Jφ

∂φ

Since V = −r2 sin θ (see exercises).
Now, note that

J = Jrer + Jθeθ + Jφeφ = Jrêr + Jθ(rêθ)+ Jφ(r sin θ)êφ = Ĵrêr + Ĵθ êθ + Ĵφêφ

Which agrees with the formula given in tables etc.

∇·J = 1
r2

∂(r2Ĵr)

∂r
+

1
r sin θ

∂(sin θĴθ)

∂θ
+

1
r sin θ

∂Ĵφ

∂φ
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An Example: Spherical Polars in 3d cont...
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An Example: Spherical Polars in 3d cont...
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An Example: Spherical Polars in 3d cont...
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An Example: Spherical Polars in 3d cont...

Curl
∇∧J = (∇Ji)∧ei =[

∂Jr

∂θ
− ∂Jθ

∂r

]
(er∧eθ)+

[
∂Jφ

∂θ
− ∂Jθ

∂φ

]
(eθ∧eφ)+

[
∂Jr

∂φ
−

∂Jφ

∂r

]
(eφ∧er)

Now look at the second component, noting that
eθ∧eφ = 1

r êθ∧ 1
r sin θ êφ = 1

r2 sin θ
êrI,[

∂Jφ

∂θ
− ∂Jθ

∂φ

]
(eθ∧eφ) =

[
∂(r sin θĴφ)

∂θ
− ∂(rĴθ)

∂φ

]
1

r2 sin θ
êrI

which can be written to agree with conventional tabulated
form (though we have a bivector and not a vector):

1
r sin θ

[
∂(sin θĴφ)

∂θ
− ∂(Ĵθ)

∂φ

]
êrI
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An Example: Spherical Polars in 3d cont...
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êrI

99 / 110



An Example: Spherical Polars in 3d cont...
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[
∂(sin θĴφ)

∂θ
− ∂(Ĵθ)

∂φ

]
êrI
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An Example: Spherical Polars in 3d cont...

Curl
∇∧J = (∇Ji)∧ei =[

∂Jr

∂θ
− ∂Jθ

∂r

]
(er∧eθ)+

[
∂Jφ

∂θ
− ∂Jθ

∂φ

]
(eθ∧eφ)+

[
∂Jr

∂φ
−

∂Jφ

∂r

]
(eφ∧er)

Now look at the second component, noting that
eθ∧eφ = 1

r êθ∧ 1
r sin θ êφ = 1

r2 sin θ
êrI,[

∂Jφ

∂θ
− ∂Jθ

∂φ

]
(eθ∧eφ) =

[
∂(r sin θĴφ)

∂θ
− ∂(rĴθ)

∂φ

]
1

r2 sin θ
êrI

which can be written to agree with conventional tabulated
form (though we have a bivector and not a vector):

1
r sin θ

[
∂(sin θĴφ)

∂θ
− ∂(Ĵθ)

∂φ

]
êrI
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]
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Exercises 5

1 For 3d spherical polars, show that V = −r2 sin θ, where
VI = (En)−1 and En = er∧eθ∧eφ.

2 Show that the eφ∧er component of ∇∧J can be written as:

1
r

[
1

sin θ

∂(Ĵr)

∂φ
−

∂(rĴφ)

∂r

]
êθI

3 Show that the er∧eθ component on ∇∧J can be written as:

1
r

[
1
r

∂(rĴθ)

∂r
− ∂(Ĵr)

∂θ

]
êφI

Check these against standard tabulated formulae.
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Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

hi =

∣∣∣∣ ∂r
∂xi

∣∣∣∣

In our language we therefore have hi = |ei|, ie simply the
moduli of the frame vectors defined by the coordinates.

All expressions of div, grad, curl etc in terms of the his, can then
be directly related to the expressions we derive in GA.
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Summary

We have

Defined the concept of a Reciprocal Frame

Shown how to construct Reciprocal Frames

Using reciprocal frames, defined and motivated the form
of the Vector Derivative

Shown how to relate coordinates, frame vectors and
reciprocal frame vectors in curvilinear coordinate systems.
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