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Overview

o Reciprocal Frames: examples of their use
o definition and use of the vector derivative

o Curvilinear Coordinates: how reciprocal frames can be
used to simplify complicated mathematics.
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Overview

©

Reciprocal Frames: examples of their use

definition and use of the vector derivative
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Curvilinear Coordinates: how reciprocal frames can be
used to simplify complicated mathematics.

o Summary
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Many problems in mathematics, physics and engineering
require a treatment of non-orthonormal frames.
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Reciprocal Frames

Many problems in mathematics, physics and engineering
require a treatment of non-orthonormal frames.

Take a set of n linearly independent vectors {e; }; these are not
necessarily orthogonal nor of unit length.
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Reciprocal Frames
Many problems in mathematics, physics and engineering
require a treatment of non-orthonormal frames.

Take a set of n linearly independent vectors {e; }; these are not
necessarily orthogonal nor of unit length.

Can we find a second set of vectors (in the same space), call
these {¢F}, such that ' '
e'-ej = J;
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O
Reciprocal Frames

Many problems in mathematics, physics and engineering
require a treatment of non-orthonormal frames.

Take a set of n linearly independent vectors {¢; }; these are not
necessarily orthogonal nor of unit length.

Can we find a second set of vectors (in the same space), call
these {¢*}, such that

i i
e-e]—éj

=] 5 = = E DA
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Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any
vector a can be written as a = a“e; = Y_a*e; (ie we are adopting
the convention that repeated indices are summed over), we
have

ek'a = €k°(aj8j) = gj(ek.e].) — a]é']k — ak

11 /110



Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any
vector a can be written as a = a“e; = Y_a*e; (ie we are adopting
the convention that repeated indices are summed over), we
have

ek'a = €k°(aj8j) = gj(ek.e].) — a]é']k — ak

Similarly, since we can also write a4 = aek = Y agek

ep-a = ek-(ajef) = a]-(ek-ef) = a]-(S{C = ay
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Reciprocal Frames cont....
We call such a frame a reciprocal frame. Note that since any
vector a can be written as a = a“e; = Y_a*e; (ie we are adopting
the convention that repeated indices are summed over), we

have

ek'a = €k°(ﬂj8j) = gj(ek.e].) — a]é']k — ﬂk

Similarly, since we can also write a4 = aek = Y agek
e = e (aje)) = aj(ex-¢) = a;d), = ay

Thus we would be able to recover the components of a given
vector in a similar way to that used for orthonormal frames.
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Reciprocal Frames cont....

We call such a frame a reciprocal frame. Note that since any
vector a can be written as a = a“e; = Y_a*e; (ie we are adopting
the convention that repeated indices are summed over), we
have

ek'a = €k°(aj8j) = gj(ek.e].) — a]é']k — ﬂk

Similarly, since we can also write a4 = aek = Y agek

ep-a = ek-(ajef) = a]-(ek-ef) = a]-(S{C = ay

Thus we would be able to recover the components of a given
vector in a similar way to that used for orthonormal frames.

So how do we find a reciprocal frame?
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We need, for example, el to be orthogonal to the set of vectors
{ea, e3,...,en }. ie e! must be perpendicular to the hyperplane
erNes/\....\ejy,.
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Reciprocal Frames cont....

We need, for example, ! to be orthogonal to the set of vectors

{ea, e3,...,en }. ie e! must be perpendicular to the hyperplane
er Nes....\ey,.

We find this by dualisation, ie multiplication by I [note: I is the
n-d pseudoscalar for our space]. We form e! via

el = aey Nes /... \e,l
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Reciprocal Frames cont....

We need, for example, ! to be orthogonal to the set of vectors

{ea, e3,...,en }. ie e! must be perpendicular to the hyperplane
er Nes....\ey,.

We find this by dualisation, ie multiplication by I [note: I is the
n-d pseudoscalar for our space]. We form e! via

el = aey Nes /... \e,l
« is a scalar found by dotting with e;:
erel =1= e1-(aeaNesA...\eyl) = a(eg AeaA...\ey)1

(this uses a useful GA relation a-(BI) = (aAB)I).
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If we let
E, =e1NexA...Ney, # 0O

we see that aE, [ = 1, so that & = E,;'I"!. Thus giving us

«0>» «F» « E>»

«E >
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If we let
E, =e1NexA...Ney, # 0O

we see that aE, [ = 1, so that & = E,;'I"!. Thus giving us

;—

(—1)k+1€1 /\62/\.../\ék/\.../\enE;1

«0>» «F» « E>»

«E >
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If we let

E, =e1NexA...Ney, # 0O

we see that aE, [ = 1, so that & = E,;'I"!. Thus giving us
k=

(—1)k+1€1 /\62/\.../\ék/\.../\enE;1

where the ¢, notation indicates that ¢, is missing from the blade.

«40r «F» « =)
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Reciprocal Frames ....

If we let
E, =e1NeaA...Ney #0

we see that «E,,] = 1,so that a = E;llfl. Thus giving us

& = (—1) ey A A ABA .. AeE ]

where the &, notation indicates that ¢; is missing from the blade.

These reciprocal frames are remarkably useful!
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Exercises 1

@ Show thata-(BI) = (a/AB)I. [Hint: make use of the fact that
a'(BrIn) = <51Br1n>nfr71]'

@ For {f1, fr, f3} = {e1, e1 +2e3, e1 + €2 + e3} show, using
the given formulae, that the reciprocal frame is given by

L LY = o - (e te), les—e), e}

[these are the reciprocal frames shown in the earlier
pictures]
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Exercises 2

@ Interchanging the role of frame and reciprocal frame,
verify that we can write the frame vectors as

e = (=1 A AL AEA. A {E"} T
where E" = e! Ae? A...\e" # 0.

@ Now show that we can move vectors through each other
(changing sign) to give

e = (1) " AT IALAEA LA {IV

where {E"} ! = [V, and V is therefore a volume factor.
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Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem
of recovering the rotor which rotates between two 3-d
non-orthonormal frames {e; } and {f}, ie find R such that

fe = ReR
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Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem
of recovering the rotor which rotates between two 3-d
non-orthonormal frames {e; } and {f}, ie find R such that

fe = ReR

It is not too hard to show that R can be written as

R = B(1 +fie")

where the constant 8 ensures that RR = 1.
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Example: Recovering a Rotor in 3-d

As an example of using reciprocal frames, consider the problem
of recovering the rotor which rotates between two 3-d
non-orthonormal frames {e; } and {f}, ie find R such that

fe = ReR

It is not too hard to show that R can be written as

R = B(1+fid")
where the constant 8 ensures that RR = 1.

A very easy way of recovering rotations.
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ways:

x=xe or x =xe

«O0>» «F»r «

A vector x can be represented in terms of coordinates in two
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The Vector Derivative

A vector x can be represented in terms of coordinates in two
ways:

x =xke, or x=xe

(Summation implied). Depending on whether we expand in
terms of a given frame {¢; } or its reciprocal {¢*}. The
coefficients in these two frames are therefore given by

*=¢éx and x =ep-x
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The Vector Derivative

A vector x can be represented in terms of coordinates in two
ways:

x =xke, or x=xe

(Summation implied). Depending on whether we expand in
terms of a given frame {¢; } or its reciprocal {¢*}. The
coefficients in these two frames are therefore given by

*=¢éx and x =ep-x

Now define the following derivative operator which we call the
vector derivative
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The Vector Derivative

A vector x can be represented in terms of coordinates in two
ways:

k

x =xke, or x=xe

(Summation implied). Depending on whether we expand in
terms of a given frame {¢; } or its reciprocal {¢*}. The
coefficients in these two frames are therefore given by

k

X k

=ex and x; =e-x

Now define the following derivative operator which we call the
vector derivative

..this is clearly a vector!
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)

This is a definition so far, but we will now see how this form

arises.
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The Vector Derivative, cont...

V= Ze axk

This is a definition so far, but we will now see how this form
arises.

Suppose we have a function acting on vectors, F(x). Using
standard definitions of rates of change, we can define the
directional derivative of F in the direction of a vector 2 as
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The Vector Derivative, cont...

V= Ze axk

This is a definition so far, but we will now see how this form
arises.

Suppose we have a function acting on vectors, F(x). Using
standard definitions of rates of change, we can define the
directional derivative of F in the direction of a vector 2 as

lim F(x+ ea) — F(x)
€—0 €
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Now, suppose we want the directional derivative in the

direction of one of our frame vectors, say ¢, this is given by

«40» «F» « =) 4
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The Vector Derivative cont....
Now, suppose we want the directional derivative in the
direction of one of our frame vectors, say ¢j, this is given by

lim F((x' +€)er + x%ex + x3e3) — F(x'e; + x%ex + x3e3)
e—0 €
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The Vector Derivative cont....
Now, suppose we want the directional derivative in the
direction of one of our frame vectors, say ¢j, this is given by

lim F((x' +€)er + x%ex + x3e3) — F(x'e; + x%ex + x3e3)
e—0 €

which we recognise as
dF (x)
ox!
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The Vector Derivative cont....

Now, suppose we want the directional derivative in the
direction of one of our frame vectors, say ¢j, this is given by

lim F((x' +€)er + x%ex + x3e3) — F(x'e; + x%ex + x3e3)
e—0 €

which we recognise as
dF (x)
ox!

ie the derivative with respect to the first coordinate, keeping
the second and third coordinates constant.
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So, if we wish to define a gradient operator, V, such that
(a-V)F(x) gives the directional derivative of F in the a
direction, we clearly need:

«40r «F» « =)

« =
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So, if we wish to define a gradient operator, V, such that
(a-V)F(x) gives the directional derivative of F in the a
direction, we clearly need:

eV = Pl for i=1,2,3

«0» «F»r «
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Vector Derivative cont.....

So, if we wish to define a gradient operator, V, such that
(a-V)F(x) gives the directional derivative of F in the a
direction, we clearly need:

0 .
eV = Fyei for i=1,2,3

...which, since ¢;-¢/ %

vector derivative:

= %, gives us the previous form of the
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Vector Derivative cont.....

So, if we wish to define a gradient operator, V, such that
(a-V)F(x) gives the directional derivative of F in the a
direction, we clearly need:

d .
eV = Fyei for i=1,2,3

...which, since ¢;-¢/-2. = -2 oives us the previous form of the
Lo FIER)

vector derivative:

V= Ze axk
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It follows now that if we dot V with a, we get the directional
derivative in the a direction:

a-V F(x) = lim Flx+ea) = F(x)
e—0 €
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The Vector Derivative cont....

It follows now that if we dot V with a, we get the directional
derivative in the a direction:

2V F(x) = lim F(x + ea) — F(x)

e—0 €

We will see later that the definition of V is independent of the
choice of frame.
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Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

«0>» «F» « E>»

«E >
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Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

A Vector Field (x): it gives VJ. This is a geometric product

«40r «F» « =)

« =
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Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

A Vector Field (x): it gives VJ. This is a geometric product

Scalar part gives divergence

«O>r «Fr «=)» «=)>»
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Operating on Scalar and Vector Fields

Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

A Vector Field J(x): it gives V]. This is a geometric product
Scalar part gives divergence

Bivector part gives curl
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Operating on Scalar and Vector Fields

Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

A Vector Field J(x): it gives V]. This is a geometric product
Scalar part gives divergence

Bivector part gives curl

V] =V-]+VAJ]
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Operating on Scalar and Vector Fields

Operating on:

A Scalar Field ¢(x): it gives V¢ which is the gradient.

A Vector Field J(x): it gives V]. This is a geometric product
Scalar part gives divergence

Bivector part gives curl

V] =V ]+ VA]
See later discussions of electromagnetism.
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Curvilinear coordinates are systems where the frame vectors
are:

vary with position — the two most commonly used sets in 3-d
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Curvilinear coordinates are systems where the frame vectors
are:

vary with position — the two most commonly used sets in 3-d
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Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors
vary with position — the two most commonly used sets in 3-d
are:

1(r,0,¢) = re, r(p,0,z) = pe, + ze;

For spherical polars, our position vector is defined in terms of a
length r and two angles 6, ¢: = coordinates are (7,6, ).

53 /110



Curvilinear Coordinates

Curvilinear coordinates are systems where the frame vectors
vary with position — the two most commonly used sets in 3-d
are:

1(r,0,¢) = re, r(p,0,z) = pe, + ze;

For spherical polars, our position vector is defined in terms of a
length r and two angles 6, ¢: = coordinates are (7,6, ).

For cylindrical polars, our position vector is defined in terms of
two lengths p, z and an angle ¢: = coordinates are (p, ¢, z).
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In a general curvilinear setup we will have coordinates

x', i =1,...,n, which are functions of the position vector, r.
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Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates
x', i =1,...,n, which are functions of the position vector, r.

Of course, we can also write the position vector, r, as a function
of the coordinates {x'} (as on previous page).
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Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates
x', i =1,...,n, which are functions of the position vector, r.

Of course, we can also write the position vector, r, as a function
of the coordinates {x'} (as on previous page).

Vary one coordinate while keeping others fixed to create a
coordinate curve. We can then create a set of frame vectors, call
them {¢;}, by finding the derivatives along these curves:
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Curvilinear Coordinates cont....

In a general curvilinear setup we will have coordinates
x', i =1,...,n, which are functions of the position vector, r.

Of course, we can also write the position vector, r, as a function
of the coordinates {x'} (as on previous page).

Vary one coordinate while keeping others fixed to create a
coordinate curve. We can then create a set of frame vectors, call
them {¢;}, by finding the derivatives along these curves:
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:

d

eV =
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:

d
@V = o
It then follows that
. . j ,
(ei.V)x] = ei.(v_x]) = al = (5]

ox! !
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:

0
GV = o
It then follows that
. . ox/ -
(0 V)0 = e (V) = 55 = ]

Therefore, using the definition of the reciprocal frame
(ei-¢/ = &), we can deduce that
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:

0
GV = o
It then follows that
. . ox/ -
(0 V)0 = e (V) = 55 = ]

Therefore, using the definition of the reciprocal frame
(ei-¢/ = &), we can deduce that

¢ = V¥
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Curvilinear Coordinates cont....

Now recall from earlier that the derivative in the ¢; direction is
e;-V, which is also the partial derivative wrt the x’ coordinate:

0
GV = o
It then follows that
. . ox/ -
(0 V)0 = e (V) = 55 = ]

Therefore, using the definition of the reciprocal frame
(ei-¢/ = &), we can deduce that

¢ = V¥

Thus, we can construct a second, reciprocal, frame from the

coordinates using the vector derivative
64 /110



Curvilinear Coordinates : Summary

Given coordinates {xi, i =1,..,n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as
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Curvilinear Coordinates : Summary

Given coordinates {xi, i =1,..,n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as

or
€i(r) = @
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Curvilinear Coordinates : Summary

Given coordinates {xi, i =1,..,n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as

or
el‘(r) = @

We can then construct a second, reciprocal, frame from the
coordinates via
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Curvilinear Coordinates : Summary

Given coordinates {xi, i =1,..,n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as

or
€i(r) = @

We can then construct a second, reciprocal, frame from the
coordinates via

d=Vx¥ [note: VAe =VAVK =0
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Curvilinear Coordinates : Summary

Given coordinates {xi, i =1,..,n}, which any position vector, r
[note, use boldface to distinguish from distance from origin],
can be expressed in terms of, we can define a set of frame
vectors as

or
€i(r) = @

We can then construct a second, reciprocal, frame from the
coordinates via

d=Vx¥ [note: VAe =VAVK =0

We see therefore that the vector derivative is crucial in relating
coordinates to frames — and we will see how this simplifies
manipulations in curvilinear coordinates.
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Gradient of a Scalar Function, ¢

Vi = ¢ % [vector]

«40>» «Fr» «E» «
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Gradient of a Scalar Function, ¢

Vi = eia—llj.

p [vector]

Divergence of a Vector Function, |

;0 (Ve
V] a_ (]]e]) — . (a]xe;)

[scalar]

«O>r «Fr «=)» «=)>»
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Gradient of a Scalar Function, ¢

Vi = eialp

e [vector]

Divergence of a Vector Function, |

i 9(J'e))
J=¢— . (Jie;) = J
\ i a - (Jej) = e'- ™ [scalar]
Curl of a Vector Function, |
] ) . a(]fe]-)
VA] = elﬁ/\(]le]-) =eN——"

e [bivector]

O» «4F»r «=)» « =
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Now, we can write the expressions for div and curl in a way

which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

«40» «F» « =) 4

it
v

nae
73 /110



Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way
which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

Divergence

V] =V-(Jler) = e (V]) + T (V-e;)

74 /110



Div, Grad, Curl cont....
Now, we can write the expressions for div and curl in a way

which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

Divergence

V] =V-(Jler) = e (V]) + T (V-e;)

(this is a simple application of the chain rule)

75/110



Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way
which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

Divergence
V] = V(o) = ei-(V]) +](V-er)

(this is a simple application of the chain rule)

Now, take the pseudovector (n — 1-blade)
P = (—1)TeAe" TN AE A Ae', and recall that e; = PIV [See
Exercises 2]. So that (where (X) denotes the scalar part of X)
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Div, Grad, Curl cont....

Now, we can write the expressions for div and curl in a way
which makes them easier to relate to the standard expressions
for derivatives in curvilinear coordinates.

Divergence

V] =V-(Jler) = e (V]) + T (V-e;)

(this is a simple application of the chain rule)

Now, take the pseudovector (n — 1-blade)
P = (—1)TeAe" TN AE A Ae', and recall that e; = PIV [See
Exercises 2]. So that (where (X) denotes the scalar part of X)

V-e; = (V(PIV)) = ((VP)IV) + (PI(VV))
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After some manipulation (which will be outlined in the
following exercises) we are able to write

V- =e-(V]') +] (e V(InV))

= e (V]) +]-(V(nV)) = 2 (v

<Ir~

«40r «F» « =)

«E
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Div, Grad, Curl cont....

After some manipulation (which will be outlined in the
following exercises) we are able to write

V- =¢-(V]")+](e-V(InV))

— e (V)) +1-(V (V) = -2 (v])

<=

V] =

a 1
=7

<\H
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We therefore have the following expressions: Gradient of a
Scalar Function,

Vi = eialp

e [vector]

«0>» «F» « E>»

«E >
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We therefore have the following expressions: Gradient of a
Scalar Function,

0P
Vip =e — P [vector]
Divergence of a Vector Function, |

V.

Vax’( "

[scalar]

«0» «F»r «
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We therefore have the following expressions: Gradient of a
Scalar Function, i

0P
Vip =e — P [vector]
Divergence of a Vector Function, |

V.

Vax’( "

[scalar]

Curl of a Vector Function, |

VA = (V]i)Ae

[bivector]

O» «4F»r «=)» « =
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Exercises 3
@ Since [V is a pseudoscalar, show that
((VP)IV) = ((VAP)IV))
@ Using the fact that e; = PIV, show that
PI(VV) =¢,V(InV)

@ Verify that VAaAb = (VAa)Ab —an(VAD),
and then, using our previous result of V Ael = 0, show that

VAP =0
and therefore that

V'Ci = el-~V(ln V)
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@ By expanding VA\J as

VA = VA(Jie) = VA(Jie') + VA(Jie)

explain how we obtain the result VAJ = (V];) Aé!

«0>» «F» « E>»

«E >
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An Example: Spherical Polars in 3d
Recall our coordinates are (7,0, ¢), and we also have an

orthogonal set of unit vectors (¢,,24,¢p) as shown in the
diagram. Thus, we can define a frame via ¢; = aa—;, to be
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An Example: Spherical Polars in 3d

Recall our coordinates are (7,0, ¢), and we also have an
orthogonal set of unit vectors (¢,,24,¢p) as shown in the
diagram. Thus, we can define a frame via ¢; = aa—;, to be

_or _ d(rer)
9r  or

ey - ér
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An Example: Spherical Polars in 3d

Recall our coordinates are (7,0, ¢), and we also have an
orthogonal set of unit vectors (¢,,24,¢p) as shown in the
diagram. Thus, we can define a frame via ¢; = aa—;, to be

_or _ d(rer)
9r  or

ey - ér
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An Example: Spherical Polars in 3d

Recall our coordinates are (7,0, ¢), and we also have an
orthogonal set of unit vectors (¢,,24,¢p) as shown in the
diagram. Thus, we can define a frame via ¢; = aa—;, to be

_or _ d(rer)
9r  or ’

er

or  J(re,) 02,  9(cosbe, +sin62,) o
ep = = = = =r = rsin 62,

o~ 9 o o
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From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

«40» «F» « =) 4

it
v

nae
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An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

1
=2 ="t =

=2
r rsinf ?

(check that ei-ej = (5]’:).
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An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

1
67 - ér e = ;ée e(P == mécp
1
(check that ei-ej = (5;).

Now we can use our previous formulae to give us grad, div
and curl in spherical polars.
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An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

e =e e = —¢ e =—— ¢
=2, = —& =3 ¢
(check that ei-ej = 5/’)

Now we can use our previous formulae to give us grad, div
and curl in spherical polars.

Gradient

Vgl o, 1o, 1 3y,

oxi  or ML*@ +rsm@Bcp
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An Example: Spherical Polars in 3d cont...

From the definition of reciprocal frame we therefore see that
the reciprocal vectors are given by

e =e e = —¢ e =—— ¢
=2, = —& =3 ¢
(check that ei-ej = 5/’)

Now we can use our previous formulae to give us grad, div
and curl in spherical polars.

Gradient

_ 40 _ 9y, 10y, 1 oy,
le_eaxi_ or b+

r g’ ot rsin@ 84)

Which agrees with the formula given in tables etc.
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Divergence

S oavyhy 1 8(r25in€]’)+ 1 a(rzsin6]9)+ 1 9(r?sinf]?)
I=v oxi  r2sinf or 2sin @ 20 2sin ¢
_19(¥7) 1 a(singf®) 9J?
2 or sinf 96 d¢

«40» «F» « =) 4

it
v

nae
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Divergence

S oavyhy 1 a(r251n9]’)+ 1 a(rzsin6]9)+ 1 9(r?sinf]?)
I=v oxi  r2sinf or 2sin @ 20 2sin ¢
_19(¥7) 1 a(singf®) 9J?
2 or sinf 96 d¢
Since V = —r?sin f (see exercises).

«40» «F» « =) 4

it
v
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An Example: Spherical Polars in 3d cont...

Divergence

v.]_la(vﬁ)_ 1 a(rzsinﬁjr)+ 1 a(rzsin9]9)+ 1 9(r?sinf]?)
TV ooxi  12sinf or 2 sin 0 a0 2 sin 0 ¢

_1a(7y) 1 d(sing)’) 9J?
2 or sinf 90 o

Since V = —?sin 6 (see exercises).

Now, note that

J=TJ"e,+]%p+]%ep = J'er+]% (1) + 7 (rsin )y = Ji&r + Jolo + [y
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An Example: Spherical Polars in 3d cont...

Divergence

v.]_la(vﬁ)_ 1 a(rzsinﬁjr)+ 1 a(rzsin9]9)+ 1 9(r?sind]?)
TV ooxi  12sinf or 2sin @ 20 2sin ¢

_1a(7y) 1 d(sing)’) 9J?
2 or sinf 90 o

Since V = —?sin 6 (see exercises).

Now, note that

J=Ter+] eo+]"ep = J"er+]" (reg) + ] (rsin 0)2y = Jir + Joto + ]2y
Which agrees with the formula given in tables etc.

10(7],) | 1 0sinffy) 1 9y

V= r2  or rsinf 00 rsinf o¢
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Curl

VA = (V])ne =
o, el ., oy 9 9, )
[% — %] (e"Ae?) + [E)Lé()p - a—{;] (e ne?) + [% - #] (e?Ne")

nae
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An Example: Spherical Polars in 3d cont...

Curl
VA = (V])Ae =
9, 0 . d 0 a, o ,
[E)j;) - 8]:} (e"Ae?) + [a]g - 8{;] (& ne?) + {B{P - E)]ﬂ (e Ne")

Now look at the second component, noting that

Orod _1s A 1 5 _ 1 4
e?Ner = 1'69/\rsin9€‘/’ - rzsinﬁe"l’
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An Example: Spherical Polars in 3d cont...

Curl ‘
VA] = (V]i)A\e' =

9, 0 . d 0 a, o ,

[8]9 — 8]:} (e ne) + [a]g - 8{;] (! Ne?) + {B{P - 8];P] (e?Ae")

Now look at the second component, noting that

Orod _1s A 1 5 _ 1 4
e?Ner = 1'69/\rsin9€(/’ - rzsiné?e"l’

2% (eeAe¢):[a<fsin97¢) aw@)] ey

0 9 3 99 | r2sind”
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An Example: Spherical Polars in 3d cont...

Curl ‘
VA= (V]i)he' =
8]7’ 8]9 A0 8]47 a]G 6 a]r aj‘i’ r
[E)Q_ar} (e"Ae”) + [89_84)] (e Ne?) + {Bcp_ar} (e Ne")

Now look at the second component, noting that

NP = 19N dgly = ol
Mo o] 6, 0 A(rsindly)  a(rfe)| 1 .
Y v — _ |
[ae agb] (Ene) 20 % | Zsind

which can be written to agree with conventional tabulated
form (though we have a bivector and not a vector):
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An Example: Spherical Polars in 3d cont...

Curl ‘
VA= (V]i)he' =
8]7’ 8]9 A0 8]47 a]G 6 a]r aj‘i’ r
[E)Q_ar} (e"Ae”) + [8(9_8(;)] (e Ne?) + {Bcp_ar] (e Ne")

Now look at the second component, noting that

NP = 19N dgly = ol
Mo o] 6, 0 A(rsindly)  a(rfe)| 1 .
Y v — _ |
[ae agb] (Ene) 20 % | Zsind

which can be written to agree with conventional tabulated
form (though we have a bivector and not a vector):

1 [a<sin9f¢> a(%)] ol

rsin@

20 ¢
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Exercises 5

@ For 3d spherical polars, show that V = —7?sin 6, where
VI = (E")"'and E" = ¢" Ne? Ne?.

@ Show that the ¢? Ae” component of V AJ can be written as:

1[ 1 9() a(%)]égl

r

sinf d¢ or

@ Show that the ¢’ \e? component on V /] can be written as:

L1200 20
r|r or 00 ¢

Check these against standard tabulated formulae.

10
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Conventionally, sets of Lamé Coefficients are defined to be

or

«40» «F» « =) 4

>

nae
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Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

or

In our language we therefore have /1; = |¢;|, ie simply the
moduli of the frame vectors defined by the coordinates.
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Connection with conventional Lamé Coefficients

Conventionally, sets of Lamé Coefficients are defined to be

or

In our language we therefore have /1; = |¢;|, ie simply the
moduli of the frame vectors defined by the coordinates.

All expressions of div, grad, curl etc in terms of the /;s, can then
be directly related to the expressions we derive in GA.
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We have

o Defined the concept of a Reciprocal Frame

«O0>» «F»r «

nae
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We have

o Defined the concept of a Reciprocal Frame

o Shown how to construct Reciprocal Frames

«4O0>» «F» «E>» « E>»

nae
108 /110



We have

o Defined the concept of a Reciprocal Frame

o Shown how to construct Reciprocal Frames

o Using reciprocal frames, defined and motivated the form
of the Vector Derivative

«O>r «Fr «=)» «=)>»

nae
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Summary

We have

o Defined the concept of a Reciprocal Frame
o Shown how to construct Reciprocal Frames

o Using reciprocal frames, defined and motivated the form
of the Vector Derivative

o Shown how to relate coordinates, frame vectors and

reciprocal frame vectors in curvilinear coordinate systems.
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