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The Multivector Derivative

Recall our definition of the directional derivative in the a
direction

a·∇ F(x) = lim
ε→0

F(x + εa)− F(x)
ε

We now want to generalise this idea to enable us to find the
derivative of F(X), in the A ‘direction’ – where X is a general
mixed grade multivector (so F(X) is a general multivector
valued function of X).

Let us use ∗ to denote taking the scalar part, ie P ∗Q ≡ 〈PQ〉.
Then, provided A has same grades as X, it makes sense to
define:

A ∗ ∂XF(X) = lim
τ→0

F(X + τA)− F(X)

τ
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The Multivector Derivative cont...

Let {eJ} be a basis for X – ie if X is a bivector, then {eJ} will be
the basis bivectors.

With the definition on the previous slide, eJ ∗ ∂X is therefore the
partial derivative in the eJ direction. Giving

∂X ≡∑
J

eJeJ ∗ ∂X

[since eJ ∗ ∂X ≡ eJ ∗ {eI(eI ∗ ∂X}].

Key to using these definitions of multivector differentiation are
several important results:
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The Multivector Derivative cont...

If PX(B) is the projection of B onto the grades of X (ie
PX(B) ≡ eJ〈eJB〉), then our first important result is

∂X〈XB〉 = PX(B)

We can see this by going back to our definitions:

eJ ∗ ∂X〈XB〉 = lim
τ→0

〈(X + τeJ)B〉 − 〈XB〉
τ

= lim
τ→0

〈XB〉+ τ〈eJB〉 − 〈XB〉
τ

lim
τ→0

τ〈eJB〉
τ

= 〈eJB〉

Therefore giving us

∂X〈XB〉 = eJ(eJ ∗ ∂X)〈XB〉 = eJ〈eJB〉 ≡ PX(B)
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Other Key Results

Some other useful results are listed here (proofs are similar to
that on previous slide and are left as exercises):

∂X〈XB〉 = PX(B)

∂X〈X̃B〉 = PX(B̃)

∂X̃〈X̃B〉 = PX̃(B) = PX(B)

∂ψ〈Mψ−1〉 = −ψ−1Pψ(M)ψ−1

X, B, M, ψ all general multivectors.
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Exercises 1

1 By noting that 〈XB〉 = 〈(XB) ˜ 〉, show the second key
result

∂X〈X̃B〉 = PX(B̃)

2 Key result 1 tells us that ∂X̃〈X̃B〉 = PX̃(B). Verify that
PX̃(B) = PX(B), to give the 3rd key result.

3 to show the 4th key result

∂ψ〈Mψ−1〉 = −ψ−1Pψ(M)ψ−1

use the fact that ∂ψ〈Mψψ−1〉 = ∂ψ〈M〉 = 0. Hint: recall
that XAX has the same grades as A.
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A Simple Example

Suppose we wish to fit a set of points {Xi} to a plane Φ – where
the Xi and Φ are conformal representations (vector and 4 vector
respectively).

One possible way forward is to find the plane that minimises
the sum of the squared perpendicular distances of the points
from the plane.

X1

X′1

X2

X′2

X3

X′3
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Plane fitting example, cont....

Recall that ΦXΦ is the reflection of X in Φ, so that −X·(ΦXΦ)
is the distance between the point and the plane. Thus we could
take as our cost function:

S = −∑
i

Xi·(ΦXiΦ)

Now use the result ∂X〈XB〉 = PX(B) to differentiate this
expression wrt Φ

∂ΦS = −∑
i

∂Φ〈XiΦXiΦ〉 = −∑
i

∂̇Φ〈XiΦ̇XiΦ〉+ ∂̇Φ〈XiΦXiΦ̇〉

= −2 ∑
i

PΦ(XiΦXi) = −2 ∑
i

XiΦXi

=⇒ solve (via linear algebra techniques) ∑i XiΦXi = 0.
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Differentiation cont....

Of course we can extend these ideas to other geometric fitting
problems and also to those without closed form solutions,
using gradient information to find solutions.

Another example is differentiating wrt rotors or bivectors.

Suppose we wished to create a Kalman filter-like system which
tracked bivectors (not simply their components in some basis) –
this might involve evaluating expressions such as

∂Bn

L

∑
i=1
〈vi

nRnui
n−1R̃n〉

where Rn = e−Bn , u, v s are vectors.
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Differentiation cont....

Using just the standard results given, and a page of algebra
later (but one only needs to do it once!) we find that

∂Bn

〈
vnRnun−1R̃n

〉
= −Γ(Bn) +

1
|Bn|2

〈BnΓ(Bn)R̃nBnRn〉2

+
sin(|bn|)
|Bn|

〈
BnΓ(Bn)R̃nBn

|Bn|2
+ Γ(Bn)R̃n

〉
2

where Γ(Bn) =
1
2 [un−1∧R̃nvnRn]Rn.
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Linear Algebra

A linear function, f, mapping vectors to vectors asatisfies

f(λa + µb) = λf(a) + µf(b)

We can now extend f to act on any order blade by
(outermorphism)

f(a1∧a2∧...∧an) = f(a1)∧f(a2)∧....∧f(an)

Note that the resulting blade has the same grade as the original
blade. Thus, an important property is that these extended
linear functions are grade preserving, ie

f(Ar) = 〈f(Ar)〉r
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Linear Algebra cont....

Matrices are also linear functions which map vectors to vectors.
If F is the matrix corresponding to the linear function f, we
obtain the elements of F via

Fij = ei·f(ej)

Where {ei} is the basis in which the vectors the matrix acts on
are written.

As with matrix multiplication, where we obtain a 3rd matrix
(linear function) from combining two other matrices (linear
functions), ie H = FG, we can also write

h(a) = f[g(a)] = fg(a)

The product of linear functions is associative.
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Linear Algebra

We now need to verify that

h(A) = f[g(A)] = fg(A)

for any multivector A.

First take a blade a1∧a2∧...∧ar and note that

h(a1∧a2∧...∧ar) = fg(a1)∧fg(a2)∧...∧fg(ar)

= f[g(a1)∧g(a2)∧.....∧g(ar)] = f[g(a1∧a2∧...∧ar)]

from which we get the first result.
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Exercises 2

1 For a matrix F

F =

(
F11 F12
F21 F22

)
Verify that Fij = ei·f(ej), where e1 = [1, 0]T and e2 = [0, 1]T,
for i, j = 1, 2.

2 Rotations are linear functions, so we can write R(a) = RaR̃,
where R is the rotor. If Ar is an r-blade, show that

RArR̃ = (Ra1R̃)∧(Ra2R̃)∧...∧(RarR̃)

Thus we can rotate any element of our algebra with the
same rotor expression.
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The Determinant

Consider the action of a linear function f on an orthogonal basis
in 3d:

The unit cube I = e1∧e2∧e3 is transformed to a parallelepiped,
V

V = f(e1)∧f(e2)∧f(e3) = f(I)
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The Determinant cont....

So, since f(I) is also a pseudoscalar, we see that if V is the
magnitude of V, then

f(I) = VI

Let us define the determinant of the linear function f as the
volume scale factor V. So that

f(I) = det(f) I

This enables us to find the form of the determinant explicitly
(in terms of partial derivatives between coordinate frames)
very easily in any dimension.
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A Key Result

As before, let h = fg, then

h(I) = det(h) I = f(g(I)) = f(det(g) I)

= det(g) f(I) = det(g) det(f)(I)

So we have proved that

det(fg) = det(f) det(g)

A very easy proof!
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The Adjoint/Transpose of a Linear Function

For a matrix F and its transpose, FT we have (for any vectors
a, b)

aTFb = bTFTa = φ (scalar)

In GA we can write this in terms of linear functions as

a·f(b) = f̄(a)·b

This reverse linear function, f̄, is called the adjoint.
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This reverse linear function, f̄, is called the adjoint.
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The Adjoint cont....

It is not hard to show that the adjoint extends to blades in the
expected way

f̄(a1∧a2∧...∧an) = f̄(a1)∧f̄(a2)∧....∧f̄(an)

See following exercises to show that

a·f(b∧c) = f[f̄(a)·(b∧c)]

This can now be generalised to

Ar·f̄(Bs) = f̄[f(Ar)·Bs] r ≤ s

f(Ar)·Bs = f[Ar·f̄(Bs)] r ≥ s
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Exercises 3

1 For any vectors p, q, r, show that

p·(q∧r) = (p·q)r− (p·r)q

2 By using the fact that a·f(b∧c) = a·[f(b)∧f(c)], use the
above result to show that

a·f(b∧c) = (f̄(a)·b)f(c)− (f̄(a)·c)f(b)

and simplify to get the final result

a·f(b∧c) = f[f̄(a)·(b∧c)]
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The Inverse

Ar·f̄(Bs) = f̄[f(Ar)·Bs] r ≤ s

Now put Bs = I in this formula:

Ar·f̄(I) = Ar·det(f)(I) = det(f)(ArI)

= f̄[f(Ar)·I] = f̄[f(Ar)I]

We can now write this as

Ar = f̄[f(Ar)I]I−1[det(f)]−1
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The Inverse cont...

Repeat this here:

Ar = f̄[f(Ar)I]I−1[det(f)]−1

The next stage is to put Ar = f−1(Br) in this equation:

f−1(Br) = f̄[BrI]I−1[det(f)]−1

This leads us to the important and simple formulae for the
inverse of a function and its adjoint

f−1(A) = [det(f)]−1f̄[AI]I−1

f̄−1
(A) = [det(f)]−1f[AI]I−1
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The Inverse cont...
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An Example

Let us see if this works for rotations

R(a) = RaR̃ and R̄(a) = R̃aR

So, putting this in our inverse formula:

R−1(A) = [det(f)]−1R̄(AI)I−1

= [det(f)]−1R̃(AI)RI−1 = R̃AR

since det(R) = 1. Thus the inverse is the adjoint ... as we know
from RR̃ = 1.
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More Linear Algebra...

That we won’t look at.....

The idea of eigenblades – this becomes possible with our
extension of linear functions to act on blades.

Symmetric (f(a) = f̄(a)) and antisymmetric (f(a) = −f̄(a))
functions. In particular, antisymmetric functions are best
studied using bivectors.

Decompositions such as Singular Value Decomposition

Tensors - we can think of tensors as linear functions
mapping r-blades to s-blades. Thus we retain some
physical intuition that is generally lost in index notation.
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Functional Differentiation

We will only touch on this briefly, but it is crucial to work in
physics and has hardly been used at all in other fields.

∂f(a)(f(b)·c) = (a·b)c

In engineering, this, in particular, enables us to differentiate wrt
to structured matrices in a way which is very hard to do
otherwise.
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Summary

Multivector differentiation : can usually differentiate most
expressions using a set of standard rules.

Linear Algebra : we will see applications of the GA
approach to linear algebra – using, in particular, the
beautiful expressions for the inverse of a function.

Functional Differentiation : used widely in physics, scope
for much more use in engineering.
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