
The Devil of Rotations is Afoot!

(James Watt in 1781)

Leo Dorst
Informatics Institute, University of Amsterdam

XVII summer school, Santander, 2016

0



1 The ratio of vectors is an operator in 2D

Given a and b, find a vector x

that is to c

what b is to a?

So, solve x from:

x : c = b : a.

The answer is, by geometric product:

x = (b/a) c

=
‖b‖
‖a‖

(
cos(φ)− I sin(φ)

)
c

= ρ e−Iφ c, an operator on c!

Here I is the unit-2-blade of the plane ‘from a to b’ (so I2 = −1), ρ is the ratio of their norms, and

φ is the angle between them. (Actually, it is better to think of Iφ as the angle.)

Result not fully dependent on a and b, so better parametrize by ρ and Iφ.

GAViewer: a = e1, label(a), b = e1+e2, label(b), c = -e1+2 e2, dynamic{x = (b/a) c,}

1



2 Another idea: rotation as multiple reflection

FIG(7,1)

Reflection in an origin plane with unit normal a

x 7→ x− 2(x · a) a/‖a‖2 (classic LA).

Now consider the dot product as the symmetric

part of a more fundamental geometric product:

x · a = 1
2(x a + a x).

Then rewrite (with linearity, associativity):

x 7→ x− (x a + a x) a/‖a‖2 (GA product)

= −a x a−1

with the geometric inverse of a vector:

a−1 = a/‖a‖2.

2



3 Orthogonal Transformations as Products of Unit Vectors

FIG(7,2)

A reflection in two successive origin planes a and b:

x 7→ −b (−a x a−1) b−1

= (b a) x (b a)−1

So a rotation is represented by the geometric product

of two vectors b a, also an element of the algebra.

(Actually, in 3D these are quaternions.)

Multiple reflections are the fundamental representation for operators in GA:

The geometric product of (invertible) vectors is called a versor.

It acts as an orthogonal transformation by sandwiching.

As we will see, versors perform structure-preserving actions on all elements.

It is common to use normalized versors and call those rotors.

3



4 Sandwiching Rotors can do Rotations in Space (R3, even Rn)

The operator we found is of the form ba. Sand-

wiching cancels the norms, so we can take both

as unit vectors. Then ba = e−Iφ′.

Now consider vectors parallel or perpendicular to

I-plane. They have different (anti-)commutation

properties.

geometry: perpendicular/parallel ↔ algebra: (anti-)commutation

e−Iφ′ x eIφ′ = (cosφ′ − I sinφ′)(x⊥ + x‖)(cosφ′ + I sinφ′)

= (cos2 φ′ + sin2 φ′)x⊥ + (cosφ′ − I sinφ′)2 x‖

= x⊥ + (cos 2φ′ − I sin 2φ′) x‖

= x⊥ + (cosφ− I sinφ) x‖ (clearly, φ′ = φ/2 !!)

= x⊥ + e−Iφ x‖.

So x⊥ is unchanged, and x‖ rotates over an angle Iφ. Therefore:

RIφ x = e−Iφ/2 x eIφ/2

4



5 Concatenation of rotations

A rotation of a vector is fully characterized by the rotor (unit spinor) eIφ/2:

RIφ x = e−Iφ/2 x eIφ/2

We can consider the rotor eIφ/2 as ‘representing the rotation’, independent of whether we want to

use it on a vector or not. (And we will use it on much more!)

Multiplication of rotations on vectors, first over Iφ, then Jψ:

RJψ (RIφ x) = e−Jψ/2
(
e−Iφ/2 x eIφ/2

)
eJψ/2

=
(
e−Jφ/2e−Iψ/2

)
x
(
e−Jφ/2e−Iψ/2

)−1
so characterized by the rotor:

e−Jφ/2 e−Iψ/2

This is not in general equal to e(Iφ/2+Jψ/2) – although it is when I and J commute.

(Footnote: in linear algebra, a rotation matrix contains not only the rotation, but also the consequences of wanting to make it act in a

location-representation: so it also depends on the coordinate system. A rotor does not! In rotors, no need for an eigenvector-analysis to see

what it actually does.)

5



6 Example of Rotation Composition

tutorial/DEMOrotex()

Rotation over π/2 around e1 followed by ro-

tation over π/2 around e2. What is the total

rotation?

e−e3e1π/4 e−e2e3π/4 =

= 1√
2
(1− e3e1)

1√
2
(1− e2e3)

= 1
2 (1− (e3e1 + e2e3 − e3e1e2e3))

= 1
2 (1− (e2e3 + e3e1 − e1e2))

with the axis v = e1+e2−e3√
3

. This represents

a rotation over v over 2π/3.

A lot more work with rotation matrices!

But it looks non-intuitive, can we visualize this?

6



7 Visualizing the Composition of 3D Rotations

The product Rt = R2R1 of rotor R1 followed by R2, expressed in their (halved) rotor angles:

c′t − Its
′
t = (c′2 − I2s

′
2) (c′1 − I1s

′
1)

= c′2c
′
1 + s′2s

′
1c⊥ − c′1s′2I2 − c′2s′1I1 − s′2s′1s⊥I⊥

where I⊥θ⊥ is the bivector angle between rotation planes I2 and I1. Note:

cos θ′t = cos θ′1 cos θ′2 + sin θ′1 sin θ′2 cos θ⊥.

This is the ‘cosine rule for sides’ from spherical trigonometry. Aha!

FIG(7,6)

So, multiplicative composition of rotors is additive composition of (half angle) rotor arcs.

Some care: arcs are free to slide, to compose them bring them to the common point.

7



8 Quaternions Subsumed (the details)

Rotors are like unit quaternions, but embedded in algebra of real vectors.

quaternion q0 + q ↔ rotor q0 − I3q.

Here I3 is the volume element of 3-dimensional space, and I23 = −1. It makes duals: a rotation axis

q becomes a rotation 2-blade I3q.

The ‘complex vector part’ of a quaternion is actually a ‘real bivector part’. All quaternion math

then follows from geometric algebra.

qp = (q0 − I3q) (p0 − I3p)

= q0p0 + 〈I3qI3p〉0 − I3(qp0 + pq0 − I−13 〈I3qI3p〉2)
= q0p0 − 〈qp〉0 − I3(qp0 + pq0 + I−13 〈qp〉2)
= p0q0 − p · q + I3(p0q + q0p + q× p),

well-known in quaternion literature, but somewhat ad hoc there.

Quaternions are very real – not involving ‘imaginary vectors’ but ‘real bivectors’.

8



9 The Advantage of Rotors: Structure Preservation

Remember from my Monday talk: using rotors (versors) provides geometric covariance.

X = x1 x2 · · · xk → (V x1 V
−1) (V x2 V

−1) · · · (V xk V −1)
= V (x1 x2 · · · xk)V −1

= V X V −1.

So we do not need to know how X was made from x1, · · · xk to transform it!

Since outer prdouct and inner product are linear combinations of geometric products, they are

also covariant; and so is taking grades.

If you can write your construction in terms of these basic products, they will transform covari-

antly under your versors.

Used in this multiplicative way (and not using the bare addition of elements of arbitrary grades),

all your objects can be interpreted geometrically. And vice versa, all truly geometric objects in the

algebra can be made this way.

We have unit quaternions that can rotate more than just 3D vectors and other unit quaternions at

the origin! We have ‘generalized quaternions’ that can even do conformal transformations.

9



10 Are All Rotors the Exponentials of Bivectors?

Rotor composition:

e−Jφ/2 e−Iψ/2.

In Euclidean 3D, this is a new element of the form e−Kα/2 with K a 2-blade(and we showed how to

compute it).

In Euclidean 4D, this is more subtle: K is in general not a 2-blade but a bivector; yet a general

rotor is still exponential of bivector.

In general n-D, not even this holds!

Only in Euclidean and Minkowski spaces (i.e., Rn,0, R0,n, Rn,1, R1,n)

can every orthogonal transformation continuously connected to the identity

be written as a rotor of the form ‘exponential of a bivector’.

Moreover, only in those spaces can any bivector be written as the sum of commuting 2-blades.

So only in those spaces can we make all orthogonal transformation continuously connected to the

identity from a suite of ‘simple rotors’ (exponentials of 2-blades).

Only on those spaces do all∗ rotors have logarithms.
∗ For a subtlety in Minkowski spaces of dimension less than 4, see Section 7.4.3 of GA4CS.

10



11 A Rotor is the Square Root of the Ratio of Unit Vectors

Remember how we started?

Given a and b, find a vector x

that is to c

what b is to a?

For unit vectors:

x = (b/a) c

= e−Iφ c

= e−Iφ/2 c eIφ/2 much preferred form!

=
(√

b/a
)
c
(√

b/a
)−1

.

simpleroot1()

So we need the square root
√

b/a.

We could employ logarithms, but there is a good trick here:√
b/a =

a + b√
2(1 + a · b)

/a =
1 + b/a√
2(1 + a · b)

.

11



12 Rotor Square Root Intuition in Euclidean 2D and 3D

A 2D Euclidean rotor R is like an marker on a unit circle representing the rotor manifold RR̃ = 1.

Taking its square root involves constructing the half angle, which may be done by a parallellogram

spanning 1 + R.

simpleroot()

This extends to 3D Euclidean GA, so:

√
R = normalize[1 + R]

=
1 + R√

(1 + R)(1 + R̃)

=
1 + R√

2(1 + 〈R〉0)
. (1)

Small print: R 6= −1.

Note that we first produce something off the rotor manifold (but in the linear space of rotor ele-

ments), then rescale by a scalar to get a (normalized) rotor.

12



13 Square Roots of General Rotors in 3D CGA

Take Home Message:

The same formula √
R = normalize[1 +R]

works for all rotors in 3D conformal geometric algebra – when we adapt the

normalization to a proper ‘projection onto the rotor manifold’.

Sketch: Since
√
R is a rotor, we can rewrite:

1 + R =
√
R (
√
R
∼

+
√
R). (2)

The first factor is a rotor. The final factor is self-reverse. But it is not necessarily a scalar, in 3D

CGA it can have a grade-4 part.

We merely need a method to split general elements of the linear rotor space of 3D CGA into a

rotor factor, and a self-reverse factor (this is a polar decomposition).

13



14 Root of 3D CGA Rotor

The common case is rather involved:

and there are some more cases to extend the square root to all cases of R.

Details in Dorst & Valkenburg [2011].

14



15 Special Case: The Square Root of Various Motors in 3D CGA

Motors M represent rigid body motions.

square root of motor M :
√
M =

1 + M√
2(1 + 〈M〉)

(
1− 〈M〉4

2(1 + 〈M〉)

)
. (3)

The formula explicitly shows how a self-reverse element consisting of only a scalar and 4-vector part

‘nudges (1 + M) back onto the motor manifold’.

For a pure rotation R at the origin in 3D, the motor has no grade-4 part, so:

square root of pure rotation R:
√

R =
1 + R√

2(1 + 〈R〉)
. (4)

This is a formula to interpolate unit quaternions (which are after all merely 3D rotors).

For a pure translation T , there is no grade-4 part, and 〈T 〉 = 1, so we obtain:

square root of pure translation T :
√
T = 1

2(1 + T ). (5)

Of course
√
Tt is simply Tt/2, but it is nice to see it included in the pattern.

15



16 Interpolation and Extrapolation of (Conformal) Motions

Conformal motions (such as rigid body move-

ments) are characterized by rotors in the

conformal model G4,1.

Interpolation of such motions in a coordinate-

independent manner involves breaking up the

relative rotor R2/R1 between two ‘stances’ R1

and R2 into equal parts. For instance:

r =
n√
R2/R1, Ri = riR1, Xi = RiX0R̃i.

Thus we need n-th roots of rotors in 3D CGA.

We give a sketch, details in Dorst & Valkenburg [2011].

16



17 Logarithms of Rotors in 3D CGA

Rotors of G4,1 are exponentials of bivectors. To get their logarithms, follow Hestenes CAGC proce-

dure (extended to CGA) to retrieve a bivector and split it into manageable 2-blades:

1. Given rotor R, take exterior derivative 1
2∂x ∧ (RxR̃) to find associated bivector F .1

2. Decompose that bivector F into two commuting 2-blades F = F+ + F− (next slide).

3. Linearize 2-blade parametrization: B+ = asinh(F+) and B− = asinh(F−).2

4. Now R can be decomposed into commuting factors: R = eB++B− = eB+eB− = eB−eB+.

5. The logarithm of R is the sum of the logarithms of eB+ and eB−.

6. Since B+ and B− are 2-blades of 3D CGA, those logarithms are standard (and may be found

in GA4CS).

1Using coordinates {ei} for G+4,1, compute this as F = 1
2

∑
i,j 〈eiRejR̃〉 ei ∧ ej, see CAGC.

2Extend asinh to general 2-blades through: asinh(B) =


asin(

√
−B2)√
−B2 B if B2 < 0

B if B2 = 0
asinh(

√
B2)√

B2
B if B2 > 0

.

17



18 Bivector Splitting in 3D CGA

A bivector F can be decomposed into two commuting 2-blades F = F+ + F− through:

F± = 1
2F (1± ‖F‖

2

F 2
) (6)

where ‖·‖ is a rather unusual ‘ norm’ of a bivector:

‖F‖ =
4

√
〈F̃F 〉

2
− 〈F̃F 〉

2

4. (7)

The square F 2
± = 1

2(〈F 2〉 ± ‖F‖2) is indeed scalar.

• This decomposition is almost always unique.

• The 2-blade F− is always an imaginary point pair (or zero).

• The 2-blade F+ can be imaginary, null or real.

I found it in [CA2GC].

18



19 Summary of CGA Logarithm

Given rotor, to write: R = e−(B++B−)/2 = e−B+/2 e−B−/2 = e−B−/2 e−B+/2.

1. S = 2(〈R〉4 − 〈R〉0) 〈R〉2 = sinh(B+) + sinh(B−), then split.

2. The ‘bivector split’ of any bivector S of R4,1 can be computed as: S± = 1
2S
(
1 ± ‖S‖2/S2

)
,

with ‖S‖ =
4√

(2〈S2〉0 − S2)S2, and for ‖S‖ 6= 0.

When ‖S‖ = 0, no split, or no unique split, see CA2GC.

3. S± = sinh(B±) thus found; C± = cosh(B±) = −〈R2〉2/S±.

Then B± = atanh2(S±, C±)

4. Done: Log(R) = −1
2B+ − 1

2B−.

Dorst & Valkenburg, Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition, in:

Guide to GA in Practice 2011.

19



20 Back to Interpolation

• The logarithm of any rotor in 3D CGA can now be computed.

• Therefore any relative rotor R can be linearly interpolated in its parameters:

R(t) = exp(log(R) t), t ∈ [0, 1].

• The square root permits linear interpolation by iterative halving.

• The 2-blades in the logarithm can be used in more advanced interpolation schemes

(such as B-splines).

roots-and-rbm/Vratio()

20



21 Wrap-up

• You can make versors as (square root of) ratios of geometric objects.

• But the form ‘exponential of a bivector’ is a more pleasant parametrization.

• In tomorrow’s talk, I will show what those bivectors mean, and how you can construct your

rotors from them directly (in 3D CGA).

• The exponents do not add under versor multiplication!

• A logarithm of a rotor can be made (for any CGA rotor), and used for interpolation.

roots-and-rbm/Vratio()

21



22 Appendix: A Sense of Rotation

It is often said that the rotors form a ‘double cover’ of the rotation

group. It seems that a rotation over φ can be represented in two ways:

exp(−Iφ/2) and − exp(−Iφ/2) = exp(−I(2π + φ)/2),

because the sign disappears in the sandwiching product.

On objects like vectors, rotations are indeed periodic with 2π,

so rotation over φ is indistinguishable from rotation over 2π + φ.

But rotations on general elements are actually periodic with

4π, not with 2π. Any Balinese dancer knows this.

So we need the whole range of angles [0, 4π); there is no dou-

ble cover of physical rotations by rotors.

22



23 Appendix: Linear Interpolation of Orientations

For translations x0 and x1, linear interpolation is

xλ = lerp(x0,x1;λ) ≡ (1− λ) x0 + λx1, λ ∈ [0, 1]

For rotations characterized by rotors R0 and R1 (relative angle θ′):

Rλ = slerp(R0, R1;λ) ≡
sin(1− λ)θ′

sin θ′
R0 +

sinλθ′

sin θ′
R1, λ ∈ [0, 1]

(There is nothing new under the sine...)

You can also use this for prediction, by taking λ > 1.

23


