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1 The Structure of 3D Conformal Motions

Spoilers (slightly simplified):
e All 3D conformal motions can be characterized by two point pairs.
e The motions are decomposable into two perpendicular circular motions.
e All trajectories reside on some (generalized) Dupin cyclide.

e Chasles decomposition is a special case: screws on a cylinder.



2 CGA: Representing E? < R*!

In R*!, conformal motions of E? become rotors, under the mapping:

(weighted) point at location p  +— p=a(p+n,+ %pZnoo)

where p is Fuclidean, and n, = %(&r +e_)and n =e_ —ey.

The blades formed by A contain lines, planes, spheres, circles, point pairs, tan-
gent vectors etc.

The ‘rounds’ can be real, imaginary or null.



3 The 2-Blades (’Point Pairs’)

The 2-blades have straightforward interpretations. The real ones contain points,
the others can be interpreted by meet and join.

Imaginary point pair tangent vector real point pair
— s o - — .
dual line direction vector flat point




4 Orthogonal decomposition of point pairs

real circle = real sphere N orthogonal plane

imaginary point pair = (real circle)”

= (real sphere)” A (orthogonal plane)”

imaginary point pair null point pair
(tangent vector)

AR

real point pair

Dual sphere o, dual plane 7, such that o - 7 = 0:

with o > 0 for imaginary point pair
PP =on = { with 0 = 0 for tangent vector (normal to plane)

with o < 0 for real point pair




5 Exceptional point pairs involving 7

There are natural parametrizations for the exceptional point pairs, involving
directions and locations.

dual line direction vector flat point
(ipp) (npp) (rpp)
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6 Orbits of simple rotor R = exp(2-blade)

‘conformal rotation’ transversion ‘conformal scaling’
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GAViewer: simplerotors()



7 Decomposition of CGA Rotors

= exp(bivector)

exp(sum of 2-blades)
sum of two commuting 2-blades)

rotor of R*! (
(
exp(
(
(

exp Bl + BQ) with BlBQ = BgBl
= exp(By) exp(By)

Motion under rotor of R*! then ‘simultancous motion’” under two commuting

2-blades. Example: Chasles” Theorem.
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8 Bivector Split and Logarithm

The split of an R*! bivector into 2 commuting blades has been solved, in the
process of computing the logarithm of an R*! rotor [1].
Always possible (except when simple), almost always unique.

~(By+B-)/2 — ,~B+/2 p=B-/2 — ,~B-/2 ,~B1/2

Given rotor, to write: R =e
1.S=2((R)y — (R)y) (R) = sinh(B, ) + sinh(B_), but how to split?.

2. The ‘bivector split’ of any bive(itor S of R*! can be computed as: Sy =
2S(1£1S12/5%), with ||S|| =v/(2(S?)¢ — 5?) 52, and for ||S|| # 0.
When ||S]| = 0, no split, or no unique split, see CA2GC.

3. Sy = sinh(B.) thus found; Cy = cosh(By) = —(R?)9/S<.

Then By = atanh2(S., Cy)

4. Done: Log(R) = =3B, — 35B_.

[1] Dorst & Valkenburg, Square Root and Logarithm of Rotors in 8D Conformal Geometric Algebra Using
Polar Decomposition, in: Guide to GA in Practice 2011.
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9 Commutation of 2-blades, geometrically

Two round point pairs commute if the associated spheres are perpendicular.

e imaginary point pairs: perpendicular intersection of real spheres, always
possible.

e rcal and imaginary point pairs: an imaginary sphere must be intersected
equatorially by a real sphere (special case: equal radius ‘coincident’)

e dlual lines (also imaginary) work with anything: coincident flat point, coin-
cident ipp, etc.



10 Orthogonal Orbits and the Commutation of Point Pairs

Let us get a feeling for the orthogonal circular orbits of commuting point pairs.

GAViewer: ganew/logs-and-knots/pperp()
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11 Orbit of a general rotor; cyclides

The orbit of a rotor can be seen as the simultaneous following of the orbits of
its constituent commuting simple rotors: arcs of orthogonal circles.

A torus has orthogonal circles; spherical inversion is conformal; so inversion
of a torus has orthogonal circles: Dupin cyclides.

GAViewer: ganew/logs-and-knots/DEMOdupin()
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There are some degenerate cases involving lines (as circles): cones (co-pointal)
and cylinders (parallel). Their inversions should be included.
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12 Two imaginary point pairs: ring cyclides
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GAViewer: ganew/logs-and-knots/cyclides()

Figure 1: The motions governed by two imaginary point pairs reside on a ring cyclide. From left to right, as the point x moves
the ring cyclide is turned ‘inside out’, with an infinite-sized parabolic ring cyclide in between.
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13 Imaginary point pair plus tangent: needle/cusp cyclides

Figure 2: A needle cyclide, a parabolic needle cyclide, and a cuspidal cyclide, all generated from the same two point pairs but
different = (and in varied views).
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14 Real plus imaginary point pair: horn/spindle

GAViewer: ganew/logs-and-knots/cyclides()

Figure 3: A horn cyclide, a parabolic horn cyclide, and a spindle cyclide, all generated from the same two point pairs but different
x (and in varied views).
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15 Coplanar real and imaginary point pair: symmetric cyclides
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GAViewer: ganew/logs-and-knots/cyclides()

Figure 4: The planar orbits of a conformal motion from a coplanar real/imaginary point pair, and spatial orbits from the same
point pair.
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16 Dual line plus point pair: torus-like

ganew/logs-and-knots/cyclides()

GAViewer:

Figure 5: The various types of torus.
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17 Dual line plus direction or flat point: cylinder, cone
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GAViewer: ganew/logs-and-knots/bivsplit3D()

Figure 6: A cone and a cylinder as special cases.
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18 Knots by well-chosen relative speeds

GAViewer: ganew/logs-and-knots/cyclides()

Figure 7: The (3,2) and (2,3) knots on ring cyclides. The switch between (3,2) and (2,3) knots is here made by moving the point
x ‘to the other side’ of the point pairs.
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19 Naturally simple shapes: orbits of conformally carried circles
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ganew/logs-and-knots/cyclides() with circle probe x = (no+ni/2) el (e2+e3)

GAViewer:
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20 Conclusions on The Construction of 3D Conformal Motions’

e coherent and compact characterization of conformal motions

e more managable than usual decomposition in translation, transversion, ro-
tation, scaling (with complicated commutation rules)

e interesting primitive shapes that are simple to generate
(but talk rejected for Eurographics ‘Symposium on Geometry Processing’)

e application: natural blending (Pablo Colapinto).

2
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Abstract This paper exposes a very geometrical yet directly computational way of working with conformal
motions in 3D. With the increased relevance of conformal structures in architectural geometry, and their traditional
use in CAD, its results should be useful to designers and programmers. In brief, we exploit the fact that any 3D
conformal motion is governed by two well-chosen point pairs: the motion is composed of (or decomposed into)
two specific orthogonal circular motions in planes determined by those point pairs. The resulting orbit of a point is
an equiangular spiral on a Dupin cyclide. These results are compactly expressed and programmed using conformal
geometric algebra (CGA), and this paper can serve as an introduction to its usefulness. Although the point pairs
come in different kinds (imaginary, real, tangent vector, direction vector, axis vector and ‘flat point’), causing the
great variety of conformal motions, all are unified both algebraically and computationally as 2-blades in CGA,
automatically producing properly parametrized simple rotors by exponentiation. An additional advantage of using
CGA is its covariance: conformal motions for other primitives such as circles are computed using exactly the same
formulas, and hence the same software operations, as motions of points. This generates an interesting class of easily
generated shapes, like spatial circles moving conformally along a knot on a Dupin cyclide.
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