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1 The Structure of 3D Conformal Motions

Spoilers (slightly simplified):

• All 3D conformal motions can be characterized by two point pairs.

• The motions are decomposable into two perpendicular circular motions.

• All trajectories reside on some (generalized) Dupin cyclide.

• Chasles decomposition is a special case: screws on a cylinder.
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2 CGA: Representing E3 ↔ R4,1

In R4,1, conformal motions of E3 become rotors, under the mapping:

(weighted) point at location p ←→ p = α (p + no + 1
2p

2n∞)

where p is Euclidean, and no = 1
2(e+ + e−) and n∞ = e− − e+.

The blades formed by ∧ contain lines, planes, spheres, circles, point pairs, tan-
gent vectors etc.

The ‘rounds’ can be real, imaginary or null.
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3 The 2-Blades (’Point Pairs’)

The 2-blades have straightforward interpretations. The real ones contain points,
the others can be interpreted by meet and join.

imaginary point pair tangent vector real point pair

dual line direction vector flat point
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4 Orthogonal decomposition of point pairs

real circle = real sphere ∩ orthogonal plane

imaginary point pair = (real circle)∗

= (real sphere)∗ ∧ (orthogonal plane)∗

imaginary point pair null point pair real point pair
(tangent vector)

Dual sphere σ, dual plane π, such that σ · π = 0:

PP = σ π =

 with σ2 > 0 for imaginary point pair
with σ2 = 0 for tangent vector (normal to plane)
with σ2 < 0 for real point pair

4



5 Exceptional point pairs involving n∞

There are natural parametrizations for the exceptional point pairs, involving
directions and locations.

dual line direction vector flat point
(ipp) (npp) (rpp)

(p ∧ u ∧ n∞)∗ u ∧ n∞ p ∧ n∞
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6 Orbits of simple rotor R = exp(2-blade)

‘conformal rotation’ transversion ‘conformal scaling’

imaginary point pair tangent vector real point pair

rotation translation (isotropic) scaling

dual line direction vector flat point

GAViewer: simplerotors()
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7 Decomposition of CGA Rotors

rotor of R4,1 = exp(bivector)

= exp(sum of 2-blades)

= exp(sum of two commuting 2-blades)

= exp(B1 + B2) with B1B2 = B2B1

= exp(B1) exp(B2)

Motion under rotor of R4,1 then ‘simultaneous motion’ under two commuting
2-blades. Example: Chasles’ Theorem.
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8 Bivector Split and Logarithm

The split of an R4,1 bivector into 2 commuting blades has been solved, in the
process of computing the logarithm of an R4,1 rotor [1].
Always possible (except when simple), almost always unique.

Given rotor, to write: R = e−(B++B−)/2 = e−B+/2 e−B−/2 = e−B−/2 e−B+/2.

1. S = 2(〈R〉4 − 〈R〉0) 〈R〉2 = sinh(B+) + sinh(B−), but how to split?.

2. The ‘bivector split’ of any bivector S of R4,1 can be computed as: S± =
1
2S
(
1± ‖S‖2/S2

)
, with ‖S‖ =

4√
(2〈S2〉0 − S2)S2, and for ‖S‖ 6= 0.

When ‖S‖ = 0, no split, or no unique split, see CA2GC.

3. S± = sinh(B±) thus found; C± = cosh(B±) = −〈R2〉2/S±.
Then B± = atanh2(S±, C±)

4. Done: Log(R) = −1
2B+ − 1

2B−.

[1] Dorst & Valkenburg, Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using

Polar Decomposition, in: Guide to GA in Practice 2011.
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9 Commutation of 2-blades, geometrically

Two round point pairs commute if the associated spheres are perpendicular.

• imaginary point pairs: perpendicular intersection of real spheres, always
possible.

• real and imaginary point pairs: an imaginary sphere must be intersected
equatorially by a real sphere (special case: equal radius ‘coincident’)

• dual lines (also imaginary) work with anything: coincident flat point, coin-
cident ipp, etc.
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10 Orthogonal Orbits and the Commutation of Point Pairs

Let us get a feeling for the orthogonal circular orbits of commuting point pairs.

GAViewer: ganew/logs-and-knots/pperp()
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11 Orbit of a general rotor; cyclides

The orbit of a rotor can be seen as the simultaneous following of the orbits of
its constituent commuting simple rotors: arcs of orthogonal circles.

A torus has orthogonal circles; spherical inversion is conformal; so inversion
of a torus has orthogonal circles: Dupin cyclides.

GAViewer: ganew/logs-and-knots/DEMOdupin()
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There are some degenerate cases involving lines (as circles): cones (co-pointal)
and cylinders (parallel). Their inversions should be included.
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imaginary tangent real dual direction flat
point pair vector point pair line vector point
B2 < 0 B2 = 0 B2 > 0 B2 < 0 B2 = 0 B2 > 0

n∞ · ∧B = 0 n∞ ∧B = 0 n∞ ∧B = 0

ring cyclide cuspidal cyclide spindle cyclide ring torus
imaginary
point
pair

NO NO

cuspidal cyclide horn torus
tangent
vector NO NO NO NO

spindle cyclide spindle torus
real
point
pair

NO NO NO NO

ring torus horn torus spindle torus simple/cylinder cylinder cone
dual
line
(axis)

cylinder simple
direction
vector NO NO NO NO

cone
flat
point NO NO NO NO NO
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12 Two imaginary point pairs: ring cyclides

GAViewer: ganew/logs-and-knots/cyclides()

Figure 1: The motions governed by two imaginary point pairs reside on a ring cyclide. From left to right, as the point x moves
the ring cyclide is turned ‘inside out’, with an infinite-sized parabolic ring cyclide in between.
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13 Imaginary point pair plus tangent: needle/cusp cyclides

GAViewer: ganew/logs-and-knots/cyclides()

Figure 2: A needle cyclide, a parabolic needle cyclide, and a cuspidal cyclide, all generated from the same two point pairs but
different x (and in varied views).
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14 Real plus imaginary point pair: horn/spindle

GAViewer: ganew/logs-and-knots/cyclides()

Figure 3: A horn cyclide, a parabolic horn cyclide, and a spindle cyclide, all generated from the same two point pairs but different
x (and in varied views).
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15 Coplanar real and imaginary point pair: symmetric cyclides

GAViewer: ganew/logs-and-knots/cyclides()

Figure 4: The planar orbits of a conformal motion from a coplanar real/imaginary point pair, and spatial orbits from the same
point pair.
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16 Dual line plus point pair: torus-like

GAViewer: ganew/logs-and-knots/cyclides()

Figure 5: The various types of torus.
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17 Dual line plus direction or flat point: cylinder, cone

GAViewer: ganew/logs-and-knots/bivsplit3D()

Figure 6: A cone and a cylinder as special cases.
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18 Knots by well-chosen relative speeds

GAViewer: ganew/logs-and-knots/cyclides()

Figure 7: The (3,2) and (2,3) knots on ring cyclides. The switch between (3,2) and (2,3) knots is here made by moving the point
x ‘to the other side’ of the point pairs.
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19 Naturally simple shapes: orbits of conformally carried circles

GAViewer: ganew/logs-and-knots/cyclides() with circle probe x = (no+ni/2) e1 (e2+e3)
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20 Conclusions on ’The Construction of 3D Conformal Motions’

• coherent and compact characterization of conformal motions

• more managable than usual decomposition in translation, transversion, ro-
tation, scaling (with complicated commutation rules)

• interesting primitive shapes that are simple to generate
(but talk rejected for Eurographics ‘Symposium on Geometry Processing’)

• application: natural blending (Pablo Colapinto).
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