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RSME-UIMP

22-26 August, 2016
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Major references. Many references have influenced my
understanding of both perspectives, particularly (in cronological
order) Chevalley-1946 [1], Riesz-1958 [2], Hestenes-1966 [3],
Porteous-1969 [4], Casanova-1976 [5], Hestenes-Sobczyk-1984 [6],
Hestenes-1986 [7], Hestenes-1999 [8], Hitzer-2003-ax [9],
Doran-Lasenby-2003 [10], Dorst-Fontijne-Mann-2007 [11]...

What follows is structured as a combination of both perspectives.

The caption: A set of mathematical footnotes to the GA part of the
excellent paper Hestenes-Li-Rockwood-2001 [12].

“[...] tools and methods to enrich cassical geometry by integrating it
more fully into the whole system.”

In next Index, points that may have some novelty are highlighted.
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Grassmann algebra
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Grassmann algebra Grading and exterior product

The exterior algebra associated to E , (∧E ,∧) is the direct sum of

the exterior powers ∧kE of E with the exterior (or outer) product

multiplication, ∧. Since ∧kE = 0 for k > n, this is a finite sum:

∧E =⊕n
k=0∧kE = R⊕ E ⊕∧2E ⊕ · · · ⊕∧nE

It is a graded algebra, which means that x ∧ y ∈ ∧r+sE when
x ∈ ∧rE and y ∈ ∧sE .

The exterior product is skewcommutative (or supercommutative): for
x ∈ ∧rE and y ∈ ∧sE ,

x ∧ y = (−1)rsy ∧ x .

♦♦♦ If e1, · · · , en is a basis of E , the
(
n
k

)
products êJ = ej1 ∧ · · · ∧ ejr

(1 6 j1 < . . . < jr 6 n) form a basis of ∧kE . In particular,

dim∧kE =
(
n
k

)
. Hence dim∧E = 2n.
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Grassmann algebra Multivectors

In general, the elements of ∧E are called multivectors.

If x ∈ ∧E , x =
∑

J λJ êJ , we write xr ∈ ∧rE to denote the
component of x of degree r , xr =

∑
|J|=r λJ êJ . So

x = x0 + x1 + · · ·+ xn, and this decomposition is unique.

Remark . Many authors, including our invited speakers, write 〈x〉r
instead of xr , and simply 〈x〉 for 〈x〉0.

The multivectors of ∧rE are called r -vectores, or homogeneous
multivectors of grade r .

For r = 0, 1, 2, n− 1, n the r -vectors receive particular names: scalars,
vectors, bivectors, pseudovectors and pseudoscalars, respectively.

Since ∧0E = R, the scalars are real numbers. Similarly, the vectors
are the elements of ∧1E = E . Scalars and vectors will be denoted as
explained in SX1/32: Greek and bold italic letters, respectively.
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Grassmann algebra Multivectors

r Name dim Λr

0 scalar 1

1 vector n

2 bivector
(
n
2

)
3 trivector

(
n
3

)
n − 1 pseudovector n

n pseudoscalar 1

Let x1, . . . , xr be vectors and set X = x1 ∧ · · · ∧ xr , which is an
r -vector. A fundamental property of the exterior algebra is that
X 6= 0 if and only if the vectors x1, . . . , xr are linearly independent,
and in this case we say that X is an r -blade.

A general r -vector is not an r -blade (see the remark on page 12) and
E1, page 85.
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Grassmann algebra Blades

If X is an r -blade, let [X ] denote the class of X with respect to the
proportionality relation: [X ] = [X ′] if and only there exists a scalar λ
such that X ′ = λX .

♦♦♦ There is natural bijection between the set SrE of vector subspaces
F of E of dimension r and the set Br of classes of r -blades.

� The r -blades X = x1 ∧ · · · ∧ xr and X ′ = x ′1 ∧ · · · ∧ x ′r
corresponding to two bases x1, . . . , xr and x ′1, · · · , x ′r of F are
proportional, because X ′ = dX , where d is the determinant of the
second basis with respect to the first. In other words, [X ] = [X ′], and
this shows that the map Sr → Br , F 7→ [X ] is well defined. This map
is clearly onto (or surjective) and it is one-to-one (or injective),
because

F = {x ∈ E | x ∧ X = 0}.
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Grassmann algebra Blades

It is therefore natural to identify a subspace F of E of dimension r
with the class [X ] of the r -blade X formed with any basis of F .

In doing so, we are allowed to write x ∈ [X ] as equivalent to x ∈ F .
Note that x ∈ [X ]⇔ x ∧ X = 0.

Each blade X such that F = [X ] represents an amount of r -volume
of F . Any two such quantities are proportional, and we say that they
have the same (opposite) orientation if the proportionality factor is
positive (negative).

Remark . If X is an r -blade, [X ] is a point in S1(∧rE ). So SrE ' BrE

yields SrE → S1(∧rE ), which turns out to be 1-to-1 (Plücker embedding).

Moreover, the image is a smooth submanifold of S1(∧rE ) of dimension

(n− r)r . Since S1(∧rE ) has dimension
(n
r

)
− 1, the Br is a set of measure

0 in the set of multivectors except for r = 1 (every 1-vector is a 1-blade)

and r = n − 1 (every (n − 1)-vector is an (n − 1)-blade). For n = 4,

r = 2, the dimensions of S1(∧2E4) and S2E3 are 5 and 4, respectively.
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Grassmann algebra Blades

O

e1

e2

e3

e2∧e3

e1∧e2
e1∧e3

Blades in the space of
e1∧e2∧e3, where the
ei are vectors.
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Grassmann algebra Functorialities

Let f ∈ End(E ). Then

There is a unique linear map f ⊗k : T kE → T kE such that
f ⊗k(e1 ⊗ · · · ⊗ ek) = f (e1)⊗ · · · ⊗ f (ek). Adding up for all k
we get a linear map f ⊗ : TE → TE that is an algebra
endomorphism.

There is a unique linear map f ∧k : ∧kE → ∧kE such that
f ∧k(e1 ∧ · · · ∧ ek) = f (e1) ∧ · · · ∧ f (ek). Adding up for all k we
get a linear map f ∧ : ∧E → ∧E which in fact is an algebra
endomorphism.

In practice there is no harm in using the same symbol f to denote f ⊗

and f ∧, which is just a form of overloading operators by using the
type of the argument to decide how to evaluate an expression. Thus,
for example, f (e ⊗ e ′) = f (e)⊗ f (e ′) while f (e ∧ e ′) = f (e)∧ f (e ′).
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Grassmann algebra Involutions of ∧E

Parity involution. The involutive linear automorphism E → E ,
x 7→ −x , extends to an automorphism x 7→ xα of ∧E . It is an
involutive algebra automorphism,

(x ∧ y)α = xα ∧ yα.

It is clear that the restriction of α to ∧rE is given by

x 7→ (−1)rx .

The parity involution α is also called main involution or grade
involution.

Let ∧+

E = {x ∈ ∧E | xα = x} and ∧−E = {x ∈ ∧E | xα = −x}. It
is clear that ∧+

E =⊕j>0∧2jE , ∧−E =⊕j>0∧2j+1E , and

∧E = ∧+

E ⊕∧−E as vector subspaces. Furthermore, ∧+

E is a
subalgebra of ∧E (the even subalgebra).
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Grassmann algebra Involutions of ∧E

Reversion. There is a unique linear automorphism ∧E → ∧E ,
x 7→ xτ = x̃ = x†, such that

(x1 ∧ · · · ∧ xr )
τ = xr ∧ · · · ∧ x1 (x1, . . . , xr ∈ E , 0 6 r 6 n) (1)

Since xr ∧ · · · ∧ x1 is a multilinear alternating function of x1, . . . , xr ,
the claim is a consequence of the universal property of the exterior
algebra.

The automorphism τ is clearly an involution and it can be
immediately checked that it is an antiautomorphism of ∧E :

(x ∧ y)τ = y τ ∧ xτ . (2)

If x ∈ ∧rE , the alternating character of ∧ implies that

xτ = (−1)(r
2)x = (−1)r//2x ,

where r//2 = b r
2
c is the integer quotient of r by 2.
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Grassmann algebra Involutions of ∧E

Clifford conjugation. The composition κ = ατ = τα is an
antiautomorphim of the exterior product and it is called Clifford
conjugation. Instead of κ(x) we also write xκ or x̄ . It is immediate to
check that the sign for grade r is (−1)(r+1)//2.

r mod 4
0 1 2 3

α + − + −
τ + + − −
κ + − − +
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Metric Grassmann algebra
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Metric Grassmann algebra The Gram rule

Assume that E is endowed with a metric q (cf. SX1). Then q induces
a metric on ∧E , which will be denoted with the same symbol q.1

With respect to this metric, ∧rE and ∧sE are orthogonal when
r 6= s, while for the r -blades X = x1 ∧ . . . ∧ xr and Y = y1 ∧ . . . ∧ yr
we have, according to the usual mathematical prescription,

q(X ,Y ) = G (x1, . . . , xr ; y1, . . . , yr ), (3)

where G = G (x1, . . . , xr ; y1, . . . , yr ) is the Gram determinant

G =

∣∣∣∣∣∣∣
q(x1, y1) · · · q(x1, yr )

...
...

q(xr , y1) · · · q(xr , yr )

∣∣∣∣∣∣∣ (4)

1If we regard q as a linear map q : E → E∗ (q(e)(e ′) = q(e, e ′)) then we
have a graded algebra map q∧ : ∧E → ∧(E∗) = ∧(E )∗ and hence a metric
q∧(x , y) = q∧(x)(y) for ∧E . As we will see (page 51), it agrees with Hestenes’
natural scalar product.
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Metric Grassmann algebra The Gram rule

In particular we have

q(X ) = G (x1, . . . , xr ), (5)

where G (x1, . . . , xr ) = G (x1, . . . , xr ; x1, . . . , xr ) takes the form

G (x1, . . . , xr ) =

∣∣∣∣∣∣∣
q(x1, x1) · · · q(x1, xr )

...
...

q(xr , x1) · · · q(xr , xr )

∣∣∣∣∣∣∣ (6)

Example. If q is the Euclidean metric of En, then

G (x1, . . . , xr ) = V (x1, . . . , xr )
2, (7)

where V (x1, . . . , xr ) is the Euclidean r -volume of the parallelepiped
defined by x1, . . . , xr (in E2, page 85, you can work out the details).
In particular we see that the induced metric on ∧En is again
Euclidean.
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Metric Grassmann algebra The Gram rule

In general, the signature of ∧Er ,s can be determined easily using the
formulas (3) and (5). Indeed, if e1, . . . , en is an orthonormal basis of
Er ,s , then the basis êJ = ej1 ∧ · · · ∧ ejk is an orthogonal basis of ∧Er ,s

and q(eJ) = q(ej1) · · · q(ejk ) = (−1)ν(J), where we set ν(J) to denote
the number of negative terms in the sequence q(ej1), . . . , q(ejk ), or,
in other words, the number of jl such that jl > r .

♦♦♦ If s > 0, the signature of ∧Er ,s is (2n−1, 2n−1).

� A positive êJ contains an arbitrary selection of the first r vectors
(2r possibilities) and an arbitrary selection of an even number of the
last s vectors, which amounts to 2s/2 = 2s−1 possibilities if s > 0.
So 2r2s−1 = 2n−1 is the number of positive terms.

Remark . The signature of ∧kEr ,s can be obtained in a similar way. The

number of positive and negative eJ of grade k (p and n) are given by:

p =
∑

062j6s

(
r

k−2j

)(
s
2j

)
, n =

∑
062j6s−1

(
r

k−2j−1

)(
s

2j+1

)
.
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Metric Grassmann algebra Inner product

The inner product is a bilinear operation in ∧E that we denote x · y .
Bilinearity implies that we only need to define X · Y when x = X and
y = Y are blades, say X = x1 ∧ · · · ∧ xr , Y = y1 ∧ · · · ∧ ys .

The basic case is for r = 1 (X = x1 = e ∈ E ), and is defined as the
(left) contraction with e:

e · Y = δe(Y ) =

{
0 if s = 0∑s

k=1(−1)k−1q(e, yk)Yk if s > 0
(8)

where Yk = y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ ys .

The fundamental property of the operator δe (often denoted ie) is
that it is a skew-derivation of grade −1 of the exterior product: if x
and y are multivectors, then (Leibnitz rule)

δe(x ∧ y) = δe(x) ∧ y + xα ∧ δe(y) (9)
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Metric Grassmann algebra Inner product

The case s = 1 (Y = y1 = e) is defined in a similar way using the
right contraction of e with X , which is equivalent to (−1)r+1e · X .

Note, in particular, that if x and y are vectors, then we get, either
way, x · y = q(x , y).

Thus, except for the case r = s = 0, we can assume that r , s > 2, in
which case the definition is given by the following recursive rules:

(x1∧· · ·∧xr )·(y1∧· · ·∧ys) =

{
(x1 ∧ · · · ∧ xr−1) · (xr · Y ) if r 6 s

(X · y1) · (y2 ∧ · · · ∧ ys) if r > s
(10)

In fact, it is easy to see, using the definition for s = 1 and induction,
that the case r 6 s is sufficient to evaluate any inner product because

X · Y = (−1)rs+sY · X . (11)

when r > s.
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Metric Grassmann algebra Inner product

In particular we see that the inner product is symmetric when r = s.
More generally: it is symmetric if and only if r and s have the same
parity or else when the least of the two grades is even. Otherwise it is
skew-symmetric.

Remark . For a vector e and a scalar λ, we have been led to the
relation e · λ = 0 (hence also to λ · e = 0). By the recursive rules, we
also get that x ·λ = 0 (hence also λ · x = 0) for any r -vector x , r > 0.
So we have defined all cases except the inner product of two scalars,
which boils down to the definition of 1 · 1. We just take the simplest
possibility, namely 1 · 1 = 0, as this will not ve used in what follows.

S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 24 / 94



Metric Grassmann algebra Inner product

Example. Given vectors x1, x2, y1, y2,

(x1 ∧ x2) · (y1 ∧ y2) = −G (x1, x2; y1, y2) = −q(x1 ∧ x2, y1 ∧ y2).

The proof is a straightfoward computation:

(x1 ∧ x2) · (y1 ∧ y2) = x1 · (x2 · (y1 ∧ y2))

= x1 · (q(x2, y1)y2 − q(x2, y2)y1)

= q(x2, y1)q(x1, y2)− q(x2, y2)q(x1, y1)

= − ((x1 · y1)(x2 · y2)− (x1 · y2)(x2 · y1))
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Metric Grassmann algebra Inner product

Example. If X = x1 ∧ x2 and Y = y1 ∧ y2 ∧ y3, a similar
computation yields

X · Y = −G (X ,Y2,3)y1 + G (X ,Y1,3)y2 − G (X ,Y1,2)y3

= (X · Y2,3)y1 − (X · Y1,3)y2 + (X · Y1,2)y3,

where Yi ,j = yi ∧ yj .

Remark . These two examples are special cases of the formulas that
we establish in next slides.
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Metric Grassmann algebra Involutions of the inner product

♦♦♦1 The involution α is an automorphism of the inner product:
(x · y)α = xα · yα.

♦♦♦2 The involution τ is an antiautomorphism of the inner product:
(x · y)τ = y τ · xτ .

� We can assume that x and y are homogeneous multivectors, say of
grades r and s, and then we can conclude by grade accounting.

The first is reduced to check that |r − s| and r + s have the same
parity (which is obvious).

The second is reduced to check that s//2 + r//2 + rs + min(r , s)
and |r − s|//2 also have the same parity, which may be left as an
exercise.
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Metric Grassmann algebra Laplace rule

If r 6= s, the formula (11) tells us that it suffices to consider the case
r 6 s in order to find an expression for the inner product X · Y of
two blades of grades r and s.

The result is what can be called Laplace rule:

♦♦♦ X · Y =
∑

J(−1)t(J,J′)(X · YJ)YJ′ =
∑

J(−1)t(J,J′)q(X̃ ,YJ)YJ′ (12)

where the sum is extended to all multiindices J ⊆ {1, . . . , s} of grade
r , J ′ = {1, . . . , s} − J and YL is the exterior product of the factors of
Y with index in L. E3, page 85, gives a condition for X · Y = 0.

We have seen the case r = 2 and s = 3 on page 26.

� For r = 1, the formula agrees with (8) and for r > 1 we can use
the recursive rule (10) and induction. The details are interesting, but
a bit tedious, and are collected in the Appendix A, page 77.

S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 28 / 94



Metric Grassmann algebra Inner product in terms of the metric

Notice that in the case r = s, the inner product can be expressed
with the following metric formula:

x · y = q(x̃ , y) = (−1)r//2q(x , y). (13)

This follows from the Laplace rule (for r -blades) and bilinearity. In
particular we get the following formula for the metric norm q(x) of
an r -vector x in terms of the inner product:

q(x) = x̃ · x = (−1)r//2x · x . (14)

Example. Let e1, . . . , en ∈ E be an orthogonal basis and J ,K two
multiindices of grade r and s, respectively. Assume that r 6 s. Then
the Laplace rule gives

êJ · êK =

{
0 if J 6⊆ K

(−1)t(J,K)q(êJ)êK−J otherwise.

Thus it has grade s − r or is 0.
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The design approach to GA
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The design approach to GA Basic axioms

A geometric algebra is a structure with the ingredients described in
A0 and satisfying the properties A1 and A2 below. We will also
assume the non-degeneration condition A3.

A0. Structure: An algebra A with a distinguished subspace E ⊆ A

not containing 1 = 1A. This structure is denoted (A,E ). The
elements of R ⊆ A are called scalars and those of E and A, vectors.

A1. Contraction rule: x2 ∈ R for any vector x (1).

A2. A is generated by E as a R-algebra (2).

Notation. If a = a1, . . . , ar is a sequence of elements of A and
J = j1, . . . , js is a sequence of integers in {1, . . . , r}, then we will
write aJ to denote the product aj1 · · · ajs .

1 The magnitude |x | > 0 of x can defined by |x |2 = εxx
2, where εx is the

sign of x2 (and called signature of x). 2 If E ′ ⊆ E is a vector subspace

and A′ ⊆ A the subalgebra generated by E ′, then (A′,E ′) is a GA.
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The design approach to GA The metric

♦♦♦ If x , y ∈ E , let q(x , y) = 1
2
(xy + yx). Then q(x , y) ∈ R and

since it is symmetric and bilinear, it is a metric for E (Clifford metric
or just metric).

� The algebra allows us to write

(x + y)2 = x2 + xy + yx + y 2.

Since x2, y 2, (x + y)2 ∈ R, it follows that

xy + yx = 2q(x , y) ∈ R.

This is Clifford’s relation. Setting y = x , we get q(x) = x2, which
means that the contraction rule and the Clifford relation are
equivalent.

Two vectors are ortogonal if and only if anticommute.

A3. Henceforth we will assume that q is non-degenerate. Its
signature will be denoted (r , s).
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The design approach to GA Linear generators

Let e1, . . . , en ∈ E be an orthonormal basis and set B = {eJ},
J ⊆ N = {1, . . . , n} a multiindex.

♦♦♦ B generates A as a vector space. Therefore dimA 6 2n.

� The elements of the form eK = ek1 · · · ekl , K = k1, . . . , kl ∈ N ,
generate A as a vector space (1). The eK with k1 6 · · · 6 kl also
generate A as a vector space (2). Now any repeated factors appear
together and can be symplified with the contraction rule. The result
will be a scalar multiple of some eJ ∈ B .

1. Use A2 and the bilinearity of the product.

2. Since ekej = −ejek , the product eK is equal to (−1)t(K)e
K̃

where K̃ is
the result of sorting K in non-decreasing order.
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The design approach to GA Linear generators

Example. If we follow the procedures explained in the proof above to
evaluate eIeJ , I and J multiindices, we get Artin’s rule:

eIeJ = (−1)t(I ,J)q(I ∩ J)eIMJ , (15)

where I M J is the (sorted) symmetric difference of I and J and
q(K ) = q(ek1) · · · q(ekr ) for any multiindex K .

In particular, e2
J = (−1)r//2q(J), r = |J |. Hence any eJ ∈ B is

invertible and e−1
J = (−1)r//2q(J)eJ . If K is another multiindex,

eKe
−1
J is, up to a sign, an element of B .

Example (A commutation formula). eJeI = (−1)c(−1)rseIeJ , where
r = |I |, s = |J |, c = |I ∩ J |. Indeed, there are rs pairs (ik , jl)
(k = 1, . . . , r , j = 1, . . . , s). The number of pairs with ik > il is
t(I , J), the number of pairs with ik < il is t(J , I ), and there are c
pairs such that ik = jl (coincidences). Thus rs = t(I , J) + t(J , I ) + c
and t(J , I ) ≡ rs + c + t(I , J) mod 2. Now the claim is immediate,
for J ∩ I = I ∩ J and J M I = I M J .

S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 34 / 94



The design approach to GA Linear generators

♦♦♦1 If n is even, the set B is linearly independent, and hence
dimA = 2n.

� Suppose we have a linear relation
∑

J λJeJ = 0. To prove that all
λJ must vanish, it is sufficient to show that the coefficient λ∅ of
1 = e∅ must vanish. Indeed, multiplying the original relation by e−1

J

we get a similar relation in which the coefficient of 1 is λJ . Now for
any index k , the original relation implies

∑
J λJekeJe

−1
k = 0. Since

ek either commutes or anticommutes with eJ , we derive the relation∑
J λJeJ = 0 where the sum only involves the eJ that commute with

all ek . Since eJ anticommutes with any of its factors when |J | is even
and non-zero, and anticommutes with any ek with k 6∈ J when J is
odd (such k exist because n is even), it turns out that the relation
implies λ∅ = 0.
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The design approach to GA Linear generators

Let B+ be the set of the eJ such that |J | is even.

♦♦♦2 The set B+ is linearly independent.

� By ♦♦♦1 we may assume that n is odd, and then it is immediate to
adapt the above argument to this case, for eN 6∈ B+.

♦♦♦3 If n is odd, say n = 2m + 1, and the set B is linearly dependent,
then n//2 + s = m + s is even, eN = ±1 and dimA = 2n−1.

� In this case the argument used in the proof of ♦♦♦1 works just as
well: starting with a non-trivial linear relation

∑
J λJeJ = 0, we can

get a similar relation in which λ∅ 6= 0 (multiply by any e−1
J for which

λJ 6= 0), but in this case we cannot get rid of N , because all ek
commute with eN . So we obtain a non-trivial relation of the form
λ∅ + λNeN = 0. This implies that eN ∈ R.

Let us work out the consequences of this.
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The design approach to GA Linear generators

First, e2
N is a positive, but we also have e2

N = (−1)m(−1)s , and
hence m + s must be even and eN = ±1. So for any J such that |J |
is odd, eJ = ±eJ′ , with J ′ = N − J . Since eJ′ ∈ B+, we conclude
that B+ generates A linearly. To finish, use ♦♦♦2.

Thus we have dimA = 2n unless n is odd (say 2m + 1) and m + s is
even, in which case dimA = 2n if e2

N 6= ±1 and dimA = 2n−1

otherwise. Signatures with n odd and m + s even will be called
special , and regular otherwise. Here is a table of special signatures
up to n = 9:

n 3 5 7 9
r 2 0 5 3 1 6 4 2 0 9 7 5 3 1
s 1 3 0 2 4 1 3 5 7 0 2 4 6 8

Note that the STA signature (1, 3) and the CGA signature (4, 1) are
regular. The Euclidean signatures (n, 0) and Lorentzian signatures
(1, n − 1) are regular unless n = 1 + 4m, m > 1.
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The design approach to GA Uniqueness results

A geometric algebra A will be said to be full if dimA = 2n and
folded if dimA = 2n−1 (or equivalently if the signature is special and
eN = ±1 for any orthonormal basis).

♦♦♦ Let A and A′ be geometric algebras with the same signature and
E and E ′ the corresponding vector spaces. Let f : E → E ′ be an
isometry. If A is full, then there is a unique algebra homomorphism
f ] : A→ A′ that agrees with f on E , and f ] is onto.

If A′ is also full, then f ] is an isomorphism.

� Let e = e1, . . . , en be an orthonormal basis of E . Let e′ =
e ′1, . . . , e

′
n, with e ′k = f (ek). Since f is an isometry, e′ is an

orthonormal basis of E ′. Then B = {eJ} is linear basis of A and
B ′ = {e ′J} is a linearly generating set for A′. If f ] exists, f ](eJ) = e ′J ,
and hence f ] is uniquely determined as a linear map, and is onto.
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The design approach to GA Uniqueness results

To see that f ] is an algebra homomorphism, it is enough to show
that f (eJeK ) = e ′Je

′
K for any multiindices J and K .

But this is an immediate consequence of Artin’s rule, for if
L = J M K , then eJeK = εeL and e ′Je

′
K = εe ′L (the same sign ε).

Finally, in case A′ is also full, B ′ is a linear basis of A′ and so f ] is a
linear isomorphism, hence an algebra isomorphism.
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The design approach to GA Existence of full GAs (Clifford algebra)

Let (E , q) be a regular metric vector space of finite dimension n. Let
CqE be the quotient algebra TE/IqE , where IqE is the ideal
generated by the tensors of the form e ⊗ e − q(e) (CqE is called the
Clifford algebra of (E , q)). Since non-zero vectors cannot belong to
IqE , the restriction of the quotient map to E = T 1E is one-to-one,
and hence we will identify E to its image in CqE . It is also immediate
that 1 6∈ E .

♦♦♦ (CqE ,E ) is a full geometric algebra with metric q.

� We just checked the conditions A0.

The fact that e ⊗ e − q(e) maps to 0 in CqE shows that e2 = q(e)
in CqE , which is the contraction rule A1. This also shows that the
metric of E defined by CqE is q and in particular that A3 is satisfied
as well.

Since TE is generated by E as an R-algebra, CqE has the same
property. This shows that A2 is also satisfied.
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The design approach to GA Existence of full GAs (Clifford algebra)

To end the proof, we have to show that CqE is full. Since this is true
for n even, we can assume that n is odd.

For this we will use the parity involution α : TE → TE , uniquely
determined by the rule

e1 ⊗ · · · ⊗ er 7→ (−e1)⊗ · · · ⊗ (−er ) = (−1)ke1 ⊗ · · · ⊗ er .

Observe that IqE is invariant by α, for

(e ⊗ e − q(e))α = e ⊗ e − q(e),

and hence α induces an involutory algebra automorphism of CqE
uniquely determined by the rule

e1 · · · er 7→ (−1)ke1 · · · er .
Now if e1, . . . , en is any basis of E , (e1 . . . en)α = −e1 . . . en
(because n is odd). Hence e1 . . . en 6∈ R and we know that this
implies that CqE is full.
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The design approach to GA Existence and structure of folded GAs

Although it is not clear what is their role in the realm of GA, for
completeness we include a proof (appendix B, page 80) that folded
GAs exist, and that there is only one, up to a canonical isomorphism,
for each special signature. Moreover, we show how to contruct this
algebra as an explicit quotient of the full algebra for the same
signature.

Here lets return to the mainstream.
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The design approach to GA The grading, outer and inner products

For each signature (r , s) there is a unique full geometric algebra, up
to a canonical isomorphism. We will denote it G = Gr ,s . Its product
will be called geometric product.

Recall that we let B = {eJ} denote the linear basis of G associated
to an orthonormal basis e1, . . . , er of E . We will also write
B r = {eJ}|J|=r .

Consider the map alt : E r → G given by

x1, . . . , xr 7→ alt(x1, . . . , xr ) = 1
r !

∑
J(−1)t(J)xj1 · · · xjr ,

where the sum is extended to all permutations J = [j1, . . . , jr ] of
{1, . . . , r}. This map is multilinear and alternating, and hence there
is a unique linear map alt : ∧rE → G such that

x1 ∧ · · · ∧ xr 7→ alt(x1, . . . , xr ).
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The design approach to GA The grading, outer and inner products

♦♦♦ The map alt : ∧rE → G is one-to-one and its image is the space
Gr spanned by B r . In particular, Gr is independent of the
orthonormal basis e and dimGr =

(
n
r

)
.

� If the vectors x1, . . . , xr are pair-wise orthogonal, they
anticommute, and this implies that alt(x1 ∧ · · · ∧ xr ) = x1 · · · xr . In
particular alt(êJ) = eJ for any J such that |J | = r .

So we have a canonical linear grading G = G0 ⊕ G1 ⊕ · · · ⊕ Gn and a
canonical graded linear isomorphism alt : ∧E → G. This
isomorphism allows us to define the exterior (outer) product and the
interior product in G by grafting the exterior and interior products of
∧E via this map. Thus, by definition, alt(x) ∧ alt(y) = alt(x ∧ y)
and alt(x) · alt(y) = alt(x · y).

The notions of multivector , r -vector and r -blade are also transferred
to G: they are respectively the elements of G , of Gr , and the
non-zero r -vectors of the form x1 ∧ · · · ∧ xr , x1 ∧ · · · ∧ xr ∈ E .
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The design approach to GA The grading, outer and inner products

♦♦♦ If x is an r -vector and y an s-vector,

x ∧ y = (xy)r+s and x · y = (xy)|r−s|. (16)

� It is enough to check these relations for x = eJ , y = eK .

From the definitions, it follows that eJ ∧ eK = alt(êJ ∧ êK ) and
eJ · eK = alt(êJ · êK ).

Thus eJ ∧ eK is zero if J ∩ K 6= ∅ and is eJeK otherwise, which
agrees with (eJeK )r+s in both cases.

For the interior product, assume r 6 s. In this case
eJeK = (−1)t(J,K)q(L)eL, with L = J M K (the sorted symmetric
difference), has grade r + s − 2|L| > r + s − 2r = s − r , with equality
if an only if J ⊆ K . Thus (eJeK )s−r = 0 if J 6⊆ K and
= (−1)t(J,K)q(J)eK−L otherwise. And these values agree with eJ · eK
(use the example on page 29). The case r > s is analyzed in a similar
way and is left as an exercise.
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The design approach to GA Involutions

The involutions α and τ can also be transported to G via alt.

The main involution α of ∧E becomes the involution α of G defined
on page 41, for on r -vectors both agree with multiplication by the
sign (−1)r . It is immediate to check that it is an involutive
automorphism of the geometric product:

(xy)α = xαyα.

The reversion on r -vectors is the multiplication by the sign

(−1)(r
2) = (−1)r//2. Since for products of orthogonal vectors this is

the sign produced by reversing the order of the factors, this holds in
general: (e1 · · · er )τ = er · · · e1. From this relation it follows that τ is
also an involutive anti-automorphism of the geometric product:

(xy)τ = y τxτ .

The Clifford involution κ = τα = ατ is also an involutive
anti-automorphism of the geometric product: (xy)κ = yκxκ.
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The design approach to GA The fundamental formula

♦♦♦ Let e ∈ E an x ∈ G. Then

ex = e · x + e ∧ x . (17)

� Since both sides are bilinear expressions of e and x , it is enough to
check the relation for e = ek and x = eJ , k ∈ N and J a multiindex.
If k 6∈ J , ek · eJ = 0 and ekeJ = ek ∧ eJ . If k ∈ J , then ek ∧ eJ = 0
and ekeJ = (−1)t(k,J)q(ek)eJ−{k} = ek · eJ .

We also have the formula

xe = x · e + x ∧ e. (18)

� Instead of proceeding as in the proof above, we can apply (17) to
xτ and then apply τ to the result:

xe = (exτ )τ = (e · xτ + e ∧ xτ )τ = x · e + x ∧ e.
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The design approach to GA Riesz’ formulas

♦♦♦ (Riesz formulas). Taking into account that x · e = (−1)r+1e · x
and x ∧ e = (−1)re ∧ x , we can write

xe = (−1)r (−e · x + e ∧ x). (19)

Together with (17), it is immediate to get the expressions

2e ∧ x = ex + (−1)rxe, 2e · x = ex − (−1)rxe. (20)

♦♦♦ For any vector e, the operator δe is an antiderivation of the
geometric product: δe(xy) = (δex)y + xα(δey). E4, page 85.

Given a vector e, we define µe : G → G by µe(x) = e ∧ x . Then
formula (17) can be written as

ex = (δe + µe)(x). (21)
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The design approach to GA Grades of a geometric product

♦♦♦ Let x ∈ Gr , y ∈ Gs . If k ∈ {0, 1, . . . , n} and (xy)k 6= 0, then
k = |r − s|+ 2i with i > 0 and k 6 r + s. Moreover, if r , s > 0, then

(xy)r+s = x ∧ y , (xy)|r−s| = x · y . (22)

� Since (xy)k depends linearly of x , we do not loose generality if we
assume that x is a non-zero r -blade, say X = x1 ∧ · · · ∧ xr .
Moreover, we may assume that x1, · · · , xr is an orthogonal basis of
[X ], in which case X = x1 · · · xr and, using (21),

xy = (µx1 + δx1) · · · (µxr + δxr )(y).

If we choose i times the summand µ, and hence r − i times δ, we get
a homogeneous multivector of grade s + i − (r − i) = s − r + 2i .
The maximum grade we can form in this way is r + s (with i = r),
and the corresponding term is x ∧ y (in agreement with (16)). Now if
s > r , the minimum grade we can get is s − r (with i = 0), and we
know that the corresponding term is x · y (by (16)).
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The design approach to GA Grades of a geometric product

If r > s, the minimum grade in xy is the minimum grade appearing in
(xy)τ = y τxτ , namely r − s, and the corresponding term is
((y τxτ )r−s)

τ = (y τ · xτ )τ = x · y .

Examples. Let e ∈ Er ,s and b ∈ G2
r ,s . Then eb − be = 2e · b, which

is a vector. This property also happens for b = xy , x , y ∈ E :

exy − xye = 2e · (xy) = 2(e · x)y − 2(ey)x .

With the same notations, we have eb + be = 2e ∧ b, a trivector.
But for b = xy , exy + xye = 2(x · y)e + 2e ∧ x ∧ y .

Example. For any r -blade X , X 2 ∈ R. Indeed, we may assume that
X is the product of orthogonal vectors, X = x1 · · · xr , and
X 2 = (−1)r//2XX̃ = (−1)r//2q(X ) ∈ R. In particular we see that if
X is non-nul (meaning X 2 6= 0), then X is invertible, with
X−1 = (−1)r//2X/q(X ).

Exercises: E5, page 86 and E6, page 86.
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The design approach to GA Alternative form of the metric

♦♦♦ q(x , y) = (xτy)0. In particular, q(x) = (xτx)0.

� Since both expressions are bilinear, we may assume that x and y
are homogeneous, say of grade r and s, respectively. Then (16) tells
us that (xτy)0 = 0 if r 6= s, which agrees with q(x , y) as this also
vanishes. So we may assume that r = s, and in this case (16) again
tells us that (xτy)0 = xτ · y and then formula (13) allows us to
conclude that xτ · y = q(x , y).

Remark . This form of the metric is called natural scalar product in
Hestenes-Li-Rockwook-2001.
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The design approach to GA A metric adjuntion formula

♦♦♦ Let x ∈ Gr and y ∈ G s and z ∈ Gm, where m = |s − r | (the grade
of x · y). Then

q(x · y , z) =

{
q(y , x ∧ z) if r 6 s

q(x , z ∧ y) if r > s

� If r > s, x · y = (−1)(r−s)sy · x , while

q(x , z ∧ y) = (−1)msq(x , y ∧ z) = (−1)(r−s)sq(x , y ∧ z).

This shows that the second case is reduced to the first and so we
may assume that r 6 s.

Since the two sides of the claimed equality are linear in x , y , and z , it
suffices to prove it for three basis elements: x = eJ ∈ Gr ,
y = eK ∈ Gs , z = eL ∈ Gs−r (m = s − r in this case). The value of
eJ · eK follows directly from the Laplace formula (12):
(−1)t(J,K−J)êK−J if J ⊆ K and 0 otherwise.
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The design approach to GA A metric adjuntion formula

Therefore q(eJ · eK , eL) = (−1)t(J,K−J)qK−J if J ⊆ K and
L = K − J , 0 in any other case. On the other hand q(eK , eJ ∧ eL)
can only be non-zero if L and J are disjoint and K = J ∪ L, which is
the same thing as saying that J ⊆ K and L = K − J , and in this case
the result is also, taking into account the reordering of
eJ ∧ eL = eJ ∧ eK−J , (−1)t(J,K−J)qK−J .
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Geometry with GA
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Geometry with GA Introduction

Let G = Gr ,s denote the full geometric algebra of signature (r , s),
which is endowed with the exterior, interior and geometric products.
The even subalgebra is denoted G+

.

The group of multivectors that are invertible with respect to the
geometric product will be denoted G× . Note that R

×
= R− {0} is a

subgroup of G× and that it contains the set E
×
r ,s of invertible vectors

(are the non-null , or non-isotropic vectors). The exercise E5, page
86, gives sufficient (and necessary) conditions for a blade to be
invertible.

As we see it, one of the fundamental reasons to study G is that it
provides an effective general way to work with the group Or ,s of
isometries of Er ,s , and to investigate the problems (geometrical or
physical) in which such groups are essential . Important instances:
the isometries of the Euclidean space En (orthogonal group On), of
the Minkowski space E1,3 (Lorentz group) and of E4,1 (conformal
group of E3).
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Geometry with GA Axial symmetries and reflections

♦♦♦ If u is a non-isotropic vector, then the map su : Er ,s → Er ,s ,
x 7→ uxu−1 is the axial symmetry with respect to the line (axis) 〈u〉.
� Since uu−1 = 1, su(u) = u. If x ∈ u⊥, then u and x

anticommute and hence su(x) = uxu−1 = −xuu−1 = −x . Thus su
is indeed the linear map that leaves u fixed and is −Id on u⊥, in
agreement with the definition of axial symmetry.

Corollary . If u is a non-isotropic vector, then the map
mu : Er ,s → Er ,s , x 7→ −uxu−1 (thus mu = −su) is the (mirror)
reflection across the hyperplane u⊥.

� Indeed, mu is the identity on u⊥ and maps u to −u.

Remark . For non-zero λ, u and λu define the same axial symmetry
(reflection). Therefore we can always assume that the vector u used
to specify an axial symmetry (reflexion) is a unit vector (that is,
q(u) = ±1).
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Geometry with GA Versors

A versor is an element v ∈ G that can be expressed as a product of
non-null vectors: v = uk · · ·u1. The set of versors Vr ,s = V (Er ,s)
forms a subgroup of G× (1).

♦♦♦ Given a versor v , the map v(x) = vαxv−1 is an isometry of Er ,s .

� Indeed, we have

vαxv−1 = (−1)kuk · · ·u1xu
−1
1 · · ·u−1

k

− uk(· · · (−u1xu1) · · · )u−1
k

= muk
(· · · (mu1(x)) · · · ) = (muk

· · ·mu1)(x)

and hence v = muk
· · ·mu1 , which is an isometry.

1. It is clear that the product of two versors is a versor, that 1 is a
versor (actually any non-zero scalar λ is a versor, as λ = (λu)u−1 for
any invertible vector u) and that the inverse of versor v is
v−1 = u−1

1 · · ·u−1
k . Since v ṽ = q(v) = u2

1 · · ·u2
k 6= 0, we can also

write v−1 = ṽ/q(v).
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Geometry with GA Versors

Let Vr ,s = V (Er ,s) be the group of versors and Or ,s = O(Er ,s) the
group of isometries of Er ,s (orthogonal group).

♦♦♦ The map ρ : Vr ,s → Or ,s given by v 7→ v (adjoint map) is an onto
homomorphism and its kernel is R

×
(the multiplicative group of

non-zero real numbers).

� It is a homomorphism because if v and w are versors, then
wv(x) = (wv)αx(wv)−1 = wαvαxv−1w−1 = w(v(x)), which shows
that wv = w v .

That it is onto is a direct consequence of the Cartan-Dieudonné
theorem, which asserts that any isometry is a product of at most n
reflections.

Since λ(x) = λxλ−1 = x for λ ∈ R
×

, it is clear that R
×

is contained
in the kernel of Vr ,s → Or ,s . So it remains to prove that any element
of the kernel is in fact a scalar.
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Geometry with GA Versors

To show the inclusion ker(ρ) ⊆ R
×

, suppose that v ∈ Vr ,s is an
element of ker(ρ). Then vαev−1 = e, or vαe = ev , for all e ∈ Er ,s .
But the Riesz formulas tell us that this relation is equivalent to say
that e · v = (ev − vαe)/2 = 0 for all e ∈ Er ,s (1), and this implies
that v must be a scalar (2).

(1) vαe = (−1)rve = (−1)rv · e + (−1)rv ∧ e = −e · v + e ∧ v ,
ev = e · v + e ∧ v , so ev − vαe = 2e · v .

(2) For any grade r , e · xr = 0 for all e. So it is enough to see that
e · xr = 0 for all vectors e and r > 0 imply xr = 0. Use an orthogonal
basis e1, . . . , en and write xr =

∑
|J|=r λJeJ . Since e1 · xr = 0, and

e1 · eJ = q(e1)eJ−{1} if 1 ∈ J and 0 otherwise, we get λJ = 0 if
1 ∈ J . So e1 does not appear in the above expansion. Arguing in a
similar way using e2, . . . , en, we get that no ek appears in the
expansion, and so xr = 0.
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Geometry with GA Pinors and spinors

Let Pinr ,s be the subgroup of Vr ,s of unit versors, that is, versors v
such that q(v) = ±1 or, equivalently, v ṽ = ±1. The elements of
Pinr ,s are called pinors.

♦♦♦ The group Pinr ,s coincides with the subgroup of Vr ,s whose
elements are products of unit vectors.

� Since it is clear that a product of unit vectors is a pinor, what
remains is to see that any pinor is a product of unit vectors. Let then
v = uk · · ·u1 be a pinor. Since q(v) = v ṽ = ±1, we have that
q(uk) · · · q(u1) = ±1. Let εj = ±1 and λj > 0 be such that
q(uj) = εjλ

2
j . Then

±1 = ε1 · · · εkλ2
1 · · ·λ2

k ,

which implies that λ1 · · ·λk = 1. Therefore v = u′k · · ·u′1, with
u′j = uj/λj , and u′j is a unit vector, for q(u′j) = q(uj)/λ

2
j = εj .
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Geometry with GA Pinors and spinors

♦♦♦ The homomorphism Pinr ,s → Or ,s , v 7→ v , is onto and its kernel is
{±1}.
� It is surjective because any reflexion has the form mu with u a unit
vector. The kernel consists of scalars λ such that q(λ) = λ2 = 1.

Consider the subgroup V
+

r ,s of Vr ,s formed by the even elements of

Vr ,s . For any v ∈ V
+

, v is the product of an even number of
reflections and hence it belongs to SOr ,s (special orthogonal group).
The map V

+

r ,s → SOr ,s is onto (again by the Cartan-Dieudonné

theorem) and its kernel is R
×

.

The group Spinr ,s is the subgroup of even elements of Pinr ,s , that is,
pinors that are the product of an even number of unit vectors
(spinors). The same reasoning as in the previous paragraph shows
that we have an onto map Spinr ,s → SOr ,s and that its kernel is
{±1}.

S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 61 / 94



Geometry with GA Rotors

Since spinors R are unit versors, in general we have RR̃ = ±1. If
RR̃ = 1, the spinor is called a rotor . In the Euclidean case, all
spinors are rotors, but this is not so in general.

Rotors form a normal subgroup, which we will denote Spin
+

r ,s , of

Spinr ,s . In fact, the map Spinr ,s → {±1}, S 7→ SS̃ , is a
homomorphism and its kernel is the rotor group.

As we will see in next lecture (with the exception of (r , s) = (1, 1))

the group Spin
+

r ,s is path connected to 1 and its image by the adjoin

map is the SO
+

r ,s , the connected component of 1 of SOr ,s (rotation

group). This gives a 2:1 cover Spin
+

r ,s → SO
+

r ,s which is the universal
cover .
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Geometry with GA Geometric covariance theorem

♦♦♦ Let v ∈ V
+

r ,s . Then v : G → G is an automorphism of the
geometric algebra (that is, a linear automorphism that preserves
grades and which is an automorphism of the geometric, exterior and
interior products).

� Indeed, v is linear and is a homomorphism of the geometric
product. Since it maps vectors to vectors, it follows that it preserves
grades. The fact that it is also an homomorphism of the exterior and
interior products follows from the preservation of grades and the
characterization of those operations given by the formulas (16).
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Geometry with GA A quote from Feynman (1963)

“The most remarkable formula in mathematics is:

e iθ = cos θ + i sin θ

This is our jewel. We may relate the geometry to the algebra by
representing complex numbers in a plane

x + iy = re iθ

This is the unification of algebra and geometry.”

R. Feynman, Lecture Notes in Physics, Volume I, Section 22-6.

Comment. Emphasis not in the original. We also note, from the
introduction of chapter 22: “So, ultimately, in order to understand
nature it may be necessary to have a deeper understanding of
mathematical relationships”.

Let us see what GA has to say about that jewel!
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Geometry with GA An archetypal example

So far in this section we have shown the value of versors (or of
pinors) for representing isometries and of even versors (or of spinors)
for representing proper isometries. But this value is more theoretical
than practical, because it hardly gives any clue about the detailed
properties of an isometry in terms of the versor producing it.

Example. Let u and v be linearly independent unit vectors in the
Euclidean space En and consider the rotor R = vu. This generates
the rotation R(x) = RxR−1. Fine, but what is its axis and amplitude
in terms of u and v?
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Geometry with GA An archetypal example

To find out, let θ ∈ (0, π) be the Euclidean angle between u and v :

cos θ = u · v .
Let i be the unit area in the oriented plane P = 〈u, v〉. So i = u1u2

for any positive orthonormal basis u1,u2 of P . We have i 2 = −1.
Note also that x 7→ xi is the anticlockwise rotation by π/2, for
u1i = u2 and u2i = −u1). In particular u and ui is a positive
orthonormal basis of P and hence v = u cos θ + ui sin θ.

u

v

θ

u i

cos θ

sin θ

i

2θ

fvu(u)
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Geometry with GA An archetypal example

It follows that u ∧ v = u ∧ ui sin θ = uui sin θ = i sin θ. Therefore

R = vu = v · u + v ∧ u = cos θ − i sin θ = e−iθ. (23)

Thus we have what may be called Euler’s spinor formula:

♦♦♦ R(x) = e−iθxe iθ.

And this formula allows us to read directly the geometric elements of
the rotation:

♦♦♦ The rotation is in the plane P and its amplitude is 2θ.

� If x is orthogonal to P , it anticommutes with u and v , hence it
commutes with i , and e−iθxe iθ = x . If x lies in P , it anticommutes
with i and hence e−iθxe iθ = xe2iθ, which is the rotation of x by 2θ
in the positive direction of P .
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Geometry with GA An archetypal example

Example. Let u and v be two linearly independent vectors of the
Euclidean space such that u2 = v 2. Let R = v(u + v) = (u + v)u.
Then R maps u to v . Indeed,

R(u) = RuR−1 = v(u + v)uu−1(u + v)−1 = v .

Example. Suppose that n = 3. If n is the unit normal vector of the
oriented plane P , the unit volume of E3 is i = in. So i = in and the
rotation fn,α about the axis n of amplitude α is given by the formula

fn,α(x) = e−inα/2xe inα/2.

Note that

i2 = inin = i 2 = −1,

for n commutes with i .

It is a good moment to take a bit of homework: E7, page 87.
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Geometry with GA An archetypal example

We can use Euler’s spinor formula as many times as we want to
produce rotations of the Euclidean space En. In parciular we can
choose area units i1, . . . , ik in pairwise orthogonal planes, and angles
α1, . . . , αk ∈ [0, 2π) (not necessarily distinct), and construct the
rotation fR with

R = exp(−ikαk/2) · · · exp(−i1α1/2).

Then the basic classification of Euclidean isometries insures that any
element of SO(En) can be obtained in this way.

If u a unit vector orthogonal to the unit-area planes, then −uR is a
reflection (an element of On − SOn), and all reflections can be
obtained in this way.

Remark . Since the area units i` commute, R = e−F , where
F = (i1α1 + · · ·+ ikαk)/2 ∈ G2. This amounts to a simple and
effective proof in the Euclidean case of a remarkable theorem or Riesz
that we state and comment next.
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Geometry with GA On a theorem of Riesz

Let E = Er ,s , n = r + s, and L ∈ SO+
r ,s (this is the connected

component of the identity of SOr ,s).

♦♦♦1 If (r , s) is of one of the forms (n, 0), (0, n), (1, n − 1) or
(n − 1, 1), there exists a bivector F ∈ G2 such that

Lx = e−FxeF . (24)

This result is false for any other signature.

♦♦♦2 If F ′ is another bivector such that e−F
′
xeF

′
= e−FxeF for all

vectors x , then eF
′

= ±eF .

� See Riesz-1958, §4.12. We will delve into the proof and
significance of this result in tomorrow’s lecture. Here let us just
notice that it is not effective in the sense that it does not provide
clues about how to relate the specific geometric properties of L to
the algebraic properties of F . Note also that these ‘specifics’ are
dealt with in detail in other lectures for signatures such as (1, 3)
(STA) and (4, 1) (CGA).
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Duality
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Duality Pseudoscalars

Let e = e1, . . . , en be an orthonormal basis of Er ,s and define

ie = e1 ∧ · · · ∧ en ∈ Gn.
We will say that it is the pseudoscalar (or also chiral element)
associated to e.

Note that by the metric formula we have:

q(ie) = q(e1) · · · q(en) = (−1)s .

If e′ = e ′1, . . . , e
′
n is another orthonormal basis of E , then

ie′ = d ie,

where d = dete(e′) is the determinant of the matrix of the vectors e′

with respect to the basis e. Taking the metric norm, we conclude
that d2 = 1 and hence d = ±1. This means that the there is a
unique pseudocalar, up to sign. The distinction of one of the
pseudoscalars is equivalent to choose an orientation of the space.
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Duality Properties of a pseudoscalar. Hodge duality

Let i ∈ Gn be a pseudoscalar. Then we have:

♦♦♦1 i ∈ G× , i−1 = (−1)s i τ = (−1)s(−1)n//2i , i 2 = (−1)n//2(−1)s .

♦♦♦2 (Hodge duality) For any x ∈ Gr , we have ix , x i ∈ Gn−r and the
maps x 7→ ix and x 7→ x i are linear isomorphisms Gr → Gn−r .
The inverse maps are x 7→ i−1x and x 7→ x i−1, respectively.

♦♦♦3 If n is odd, i commutes with all elements of G. This is also
expressed by saying that i belongs to the center of G.

♦♦♦4 If n is even, i commutes with even multivectors and
anticommutes with odd multivectors.

♦♦♦5 If q(i) = 1, then the Hodge duality are isometries. If q(i) = −1,
they are antiisometries.

If you have not seen it, it is enlightening to work out the case n = 3
in detail. See E10, page 90.
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Duality Properties of a pseudoscalar. Hodge duality

�1 Since (−1)s = q(i) = i τ i , we see that i ∈ G× and that i−1 is
given by the stated formula. The value of i 2 follows readily from this.

�2 Since i = eN , for any multiindex J of order r we conclude that
eJ i , ieJ ∈ Gn−r using Artin’s formula.

�3&4 We can use the formula in the second example on page 34:

ej i = ejeN = (−1)n+1eNej = (−1)n+1iej ,

so i commutes (anticommutes) with all vectors for odd n (for n
even).

�5 Let us compute q(x i , y i), for x , y ∈ Gr , using the alternative
definition of the metric:

q(x i , y i) = ((x i)(y i)τ )0 = (x i i τy τ )0 = (xq(i)y τ )0 = q(i)q(x , y).

That q(ix , iy) = q(i)q(x , y) is proved similarly, using that

(ix)τ iy = xτ i τ iy = xτq(i)y = q(i)xτy .
S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 74 / 94



Duality Properties of a pseudoscalar. Hodge duality

The following table lists the value of i 2 for 1 6 n 6 4:

n 1 2 3 4
r 1 0 2 1 0 3 2 1 0 4 3 2 1 0
s 0 1 0 1 2 0 1 2 3 0 1 2 3 4
i 2 + − − + − − + − + + − + − +

Notice that from the formula giving i 2 it follows that its value is
(−1)s if n ≡ 0, 1 mod 4 and −(−1)s otherwise.

Example. Let i be a pseudoscalar and define, for any multivector x ,
x∗ = x i (Hodge dual of x). If X is a non-nul r -blade, then
[X ∗] = [X ]⊥ (the orthogonal of [X ]). Indeed, by taking an
orthonormal basis of [X ], and completing it to an orthonormal basis
of E with the same orientation as i , we can assume that X = eJ , for
some J , and then X ∗ = ±eJ′ , J ′ = N − J .
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Appendices
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Appendix A Proof of Laplace formula

The arguments that follow make up a proof of formula (12).

We will proceed by induction with respect to r . Since we already
observed that the statement is true for r = 1, we can assume that
r > 1 and that the formula is correct for r − 1 (induction
hypothesis). Then, setting X ′ = x1 ∧ · · · ∧ xr−1 and using the
recursive rules, we can write

X · Y = X ′ · (xr · Y )

= X ′ ·
(∑s

k=1(−1)k−1q(xr , yk)Yk ′
)

=
∑s

k=1(−1)k−1q(xr , yk)X ′ · Yk ′ ,

with k ′ = {1, . . . , s} − {k}. But now we have, by the induction
hypothesis,

X ′ · Yk ′ =
∑

L(−1)t(L,k ′−L)(X ′ · (Yk ′)L)Yk ′−L,

where L runs over the size r − 1 multiindices contained in k ′

(equivalent to say that L does not contain k).
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Appendix A Proof of Laplace formula

Now there is a one-to-one correspondence between the set of
multiindices L of order r − 1 not containing k and the set of
multiindices J of order r containing k : L = J − {k}, or
J = ({k} ∪ L)∼ (the reordering of {k} ∪ L in increasing order). Using
this correspondence we have (Yk ′)L = YL = YJ−{k} and k ′ − L = J ′

and consequently

X · Y =
∑s

k=1(−1)k−1q(xr , yk)
∑

J(−1)t(J−{k},J′)(X ′ · YJ−{k})YJ′ .

This sum can be rearranged as follows:∑
J∈Ir,s

(∑
k∈J(−1)k−1(−1)t(J−{k},J′)q(xr , yk)(X ′ · YJ−{k})

)
YJ′ . (∗)

The number of inversions t(J − {k}, J ′) is equal to t(J , J ′)− h,
where h is the number of inversions in the sequence (k , J ′). If

J = j1 < · · · < jl−1 < k = jl < jl+1 < · · · < jr ,

it is clear that h = (k − 1)− (l − 1) = k − l and hence that
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Appendix A Proof of Laplace formula

t(J − {k}, J ′) = t(J , J ′)− k + l .

So in the expression (∗) we can use

(−1)k−1(−1)t(J−{k},J′) = (−1)t(J,J′)(−1)l−1

and get

X · Y =
∑

J∈Ir,s (−1)t(J,J′)
(∑r

l=1(−1)l−1q(xr , yjl )(X ′ · YJ−{jl})
)
YJ′ .

Finally, ∑r
l=1(−1)l−1q(xr , yjl )(X ′ · YJ−{jl}) = X · YJ ,

by the recursive rule.
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Appendix B Existence and structure of folded geometric algebras

The problem is the following. If we have a special signature
(n = 2m + 1, m + s even), we want to find out whether there are
folded geometric algebras A′ (eN = ε, ε = ±1) of that signature and
if they exist, how many non-isomorphic can we find.

Suppose A′ is an folded geometric algebra and let A be the full
geometric algebra of the same signature as A′. Then there is a
unique homomorphism of algebras f : A→ A′, which is onto. It
follows that A′ ' A/I, where I = ker(f ). This ideal contains 1− εeN
(if e ′N = ε) and its dimension must be dimA)− dim(A′) = 2n−1.

Remark . We can assume that ε = 1 if we use that the pseudoscalar is
defined up to sign. With ε = 1, we have some orientation, and with
ε = −1, we have the reversed orientation.
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Appendix B Existence and structure of folded geometric algebras

♦♦♦ Let A be the full geometric algebra of a special signature (r , s).
Let eN be the pseudoscalar associated to an orthonormal basis. Then
the ideal I of A generated by 1− eN has dimension 2n−1 and the
quotient algebra A′ = A/I is a restricted geometric algebra of
signature (r , s).

� Since eN commutes with any element, the ideal generated by
1− eN is linearly spanned by the elements

fJ = eJ − eJeN = eJ − (−1)t(J,N)q(J)eJ′ ,

where J = j1, . . . , jk is any multiindex and J ′ = N − J . There are
2n−1 such elements for k = |J | even, and these elements are linearly
independent because the corresponding J ′ are odd.

The above 2n−1 elements form a linear basis of I because, as we will
see now, fJ′ = ±fJ . Indeed, applying the formula to odd J ′, we get
the element
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Appendix B Existence and structure of folded geometric algebras

fJ′ = eJ′ − eJ′eN = eJ′ − (−1)t(J′,N)q(J ′)eJ

= −(−1)t(J′,N)q(J ′)
(
eJ − (−1)t(J′,N)q(J ′)eJ′

)
.

Now we will establish the equality of signs

(−1)t(J′,N)q(J ′) = (−1)t(J,N)q(J),

or, equivalently, that

(−1)t(J,N)+t(J′,N)q(J)q(J ′) = 1.

But this follows from q(J)q(J ′) = q(N) = (−1)s ,

(−1)t(J,N)+t(J′,N) = (−1)ΣJ−k+ΣJ′−(n−k) = (−1)(n+1)//2+n = (−1)m

and the fact that m + s is even by hypothesis.
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Appendix B Existence and structure of folded geometric algebras

♦♦♦ The construction above using the orientations eN and −eN leads
to isomorphic algebras.

� Indeed, the map defined by e1, . . . , en 7→ −e1, e2, . . . , en is an
isometry that extends to an automorphism of the full algebra, and
this automorphism maps the ideal generated by 1− eN to the ideal
generated by 1 + eN , thus yielding an isomorphism of the quotient
algebras.
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Exercises
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Exercises

E1. Construct a bivector of E4 that is not a blade.

E2. The formula (7) is true for r = 1, for the 1-volume of x1 is |x1|
and |x1|2 = q(x1, x1). Now use induction on r to show that for r > 1
the formula is true if xr is orthogonal to 〈x1, . . . , xr−1〉. Finally show
that the formula is true in general by decomposing xr as a sum
x ′r + x ′′r with x ′r ∈ 〈x1, . . . , xr−1〉 and x ′′r ∈ 〈x1, . . . , xr−1〉⊥.

E3. Let X be an r -blade and Y and s-blade, r 6 s. Show that
X · Y = 0 if one of the factors of X is orthogonal to all the factors
of Y .

E4. Given a vector e ∈ E = Er ,s , let δe be the unique antiderivation
of the tensor algebra TE such that δe(e ′) = q(e, e ′) for any vector
e ′. With the notations used in the proof of the existence of the
geometric product, show that δe vanishes on the generators of the
ideal IqE and hence that δe IqE ⊆ IqE . Therefore δe induces an
antiderivation of CqE and a fortiori of the geometric product.
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Exercises

E5. Let u1, . . . ,ur ∈ Er ,s . Set U = u1 ∧ · · · ∧ ur . Show that if [U]
is non-singular (this means that the restriction of q to [U] is
non-degenerate) then U is invertible. Is the converse true? Hint:
First settle the case in which the uj are pair-wise orthogonal.

E6. Let u1, . . . ,ur ∈ En be linearly independent vectors and set
U = u1 ∧ . . . ∧ ur . Show that for any vector x ∈ En the expressions

(x · U)U−1 and (x ∧ U)U−1

yield the orthogonal projections of x on [U] and on [U]⊥ (the latter
is often called the rejection of x by [U]). Hints: Both expressions
are linear in x . The first vanishes for x ∈ [U]⊥ and coincides with
(xU)U−1 = x for x ∈ [U]. The second vanishes for x ∈ [U] and
coincides with (xU)U−1 = x for x ∈ [U]⊥.

S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 86 / 94



Exercises

E7. Olinde Rodrigues formulas. Let n,n′ ∈ E3 be unit vectors and
α, α′ ∈ R. Show that the amplitude α′′ and the axis n′′ of the
composition fn′,α′fn,α is given by the formulas:

cos α′′

2
= cos α

2
cos α′

2
− (n · n′) sin α

2
sin α′

2

n′′ sin α′′

2
= n sin α

2
cos α′

2
+ n′ cos α

2
sin α′

2
− (n × n′) sin α

2
sin α′

2
.
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Exercises Tables

E8. Let G2 be the geometric algebra of the Euclidean plane E2 and
Ḡ2 of the anti-Euclidean plane E2̄ (its metric is q̄ = −q, q the metric
of E2).

Let e1, e2 be an orthonormal basis E2. The corresponding linear basis
of G2 (and Ḡ2) is 1, e1, e2, e12 = i (the unit area). The tables for the
geometric product, however, are quite different:

G2 e1 e2 i

e1 1 i e2

e2 −i 1 −e1

i −e2 e1 −1

Ḡ2 e1 e2 i

e1 −1 i −e2

e2 −i −1 e1

i e2 −e1 −1

Hint. For the computation of product tables, use the formulas
introduced in the examples on page 34.
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Exercises Tables

E9. G3 is the geometric algebra of the Euclidean space E3 (Pauli
algebra). Let e1, e2, e3 be an orthonormal basis and i = e123 = e1e2e3

(unit volume). Note that ie1 = e2e3, ie2 = e3e1, ie3 = e1e2 is a basis of
G2. The multiplication table of the geometric product using this basis is
as follows:

G3 e1 e2 e3 ie1 ie2 ie3 i

e1 1 ie3 −ie2 i −e3 e2 ie1

e2 −ie3 1 ie1 e3 i −e1 ie2

e3 ie2 −ie1 1 −e2 e1 i ie3

ie1 i −e3 e2 −1 −ie3 ie2 −e1

ie2 e3 i −e1 ie3 −1 −ie1 −e2

ie3 −e2 e1 i −ie2 ie1 −1 −e3

i ie1 ie2 ie3 −e1 −e2 −e3 −1

We see that 〈1, i 〉 ' C is the center of G3. We also see that the even
subalgebra G+

= 〈1, ie1, ie2, ie3〉 is isomorphic to the quaternion field
H = 〈1, I , J ,K 〉, via the linear map given by

1, ie1, ie2, ie3 7→ 1, I , J ,K .
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Exercises Tables

E10. With the same notations as in E9, and using what we have
learned in the section Playing with the pseudoscalar (page 73), we
get that i 2 = −1, that i commutes with any element of G, that the
map E3 = G1 → G2, x 7→ ix = xi , is an isometry. These are
particular features of 3D and can be proved directly with no difficulty.

For any vectors x and y , show that the vector −i(x ∧ y) is equal to
the cross product x × y : Hint: If jkl is a cyclic permutation of 123,
then −i(ej ∧ ek) = el = ej × ek .

Show that x × y = −(ix) · y = y · (ix). Hint: The second equality is
clear and y · (ix) = (y · i)x − i(y · x) = iyx − i(y · x) = i(y ∧ x),
for y · i = yi − y ∧ i = yi = iy .

If z is a third vector, (x × y) · z = det(x , y , z) (mixed product).

(x × y)× z = (x · z)y − (y · z)x (double cross product).
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S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 91 / 94



References II

[4] I. R. Porteous, Topological geometry (2nd edition).

CUP, 1981 (1st edition: 1969).
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S. Xambó (RSME-UIMP) Axiomatics 22-26 August, 2016 93 / 94

http://vixra.org/pdf/1306.0178v1.pdf


References IV

[12] D. Hestenes, H. Li, and A. Rockwood, “New algebraic tools for
classical geometry,” in Geometric computing with Clifford algebras,
pp. 3–26, Springer, 2001.
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