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What is Geometry? Erlangen Program (EP)
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What is Geometry? EP / Introduction

Klein-1872 [1]

Introduction

Primacy of projective geometry: “the projective method now
embraces the whole of geometry.”

On metrical properties: “relations to the circle at infinity
common to all spheres.”

Need of general principle: “beside the elementary and the
projective geometry, [...] geometry of reciprocal radii vectors, the
geometry of rational transformations, ...”.

Stress on the unity in geometry: “geometry, [...] one in
substance, [...] broken up [...] into a series of almost distinct
theories.” “[...] distinction between modern synthetic and
modern analytic geometry must no longer be regarded as
essential.”
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What is Geometry? EP / Introduction

On Lie: “Our respective investigations, [...] have led to the same
generalized conception here presented.”

Exceedingly incomplete: “projective geometry leaves untouched
[...] the theory of the curvature of surfaces.”

Mathematical physics: bemoans that “the mathematical
physicist disregards the advantages afforded him in many cases
by only a moderate cultivation of the projective view.”

On n-folds: Useful as possible parameter spaces of geometric
figures, like for lines in 3D (which make up a 4-fold, Klein’s
quadric).
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What is Geometry? EP / §1

§1
Most essential idea: “group of space-transformations.”
(emphasis in original). Examples: group of rigid motions, group
of collineations. It is assumed that the group is not finite (or
even discrete).
Motto: Geometry is the study of invariants under a group of
transformations.
Actions. An action of a group G on a space X is a map
G × X → X , (g , x) 7→ g · x , such that 1G · x = x for all x ∈ X
and g ′ · (g · x) = (g ′g) · x for all x ∈ X and all g , g ′ ∈ G . It is
easy to see that Tg : X → X , x 7→ g · x , is a transformation of
X (one-to-one and onto), and that T−1

g = Tg−1 .

As expressed in the title, this view allows to compare geometries for
which the group of one is contained in the other. For example, the
euclidean group is a subgroup of the affine group and this in turn is a
subgroup of the projective group.
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What is Geometry? EP / §3 & §4

§3: Projective geometry . “Metrical properties are to be considered as
projective relations to a fundamental configuration, the circle at
infinity.”

§4: Transfer of properties by representations.

O

P ′

P
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What is Geometry? EP / §5

§5: On the arbitrariness of the choice of the space-element. Hesse’s
principle of transference. Line geometry . “[...] as long as we base our
geometrical investigation upon the same group of transformations,
the substance of the geometry remains unchanged.”

“The essential thing is, then, the group of transformations; the
number of dimensions to be assigned to a sapce appears of secondary
importance.”

Example: Klein’s quadric.
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What is Geometry? EP / §6

§6: The geometry of reciprocal radii. Interpretation of x + iy . “[...]
the processes here involved have not yet, like projective geometry,
been united into a special geometry, whose fundamental group would
be the totality of the transformations resulting from a combination of
the principal group with geometric inversion.”

“In the geometry of reciprocal radii the elementary ideas are the
point, circle, and sphere. The line and the plane are special cases of
the latter, characterized by the property that they contain a point
which, however, has no further special significance in the theory,
namely, the point at infinity . If we regard this point as fixed,
elementary geometry is the result.”

The geometry of reciprocal radii in the plane and the projective
geometry on a quadric surface are one and the same; and, similarly:
The geometry of reciprocal radii in space is equivalent to the
projective treatment of a space represented by a quadratic equation
between five homogeneous variables.
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What is Geometry? EP / §7 & §8

§7: Extension of the preceding considerations. Lie’s sphere geometry.
“[...] we have the following correspondence:

the space geometry whose element is the plane and whose group
is formed of the linear transformations converting a sphere into
itself , and

the plane geometry whose element is the circle and whose group
is the group of geometric inversion.

§8: Enumeration of other methods based on a group of
point-transformations.

8.1 The Group of Rational Transformations.

8.2 Analysis situs.

8.3 The Group of all Point-transformations.
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What is Geometry? EP / §9 & §10

§9. On the group of all contact-transformations. Here the basic
element is a flag point-plane (five dimensions) and later also
point-line-plane (six dimensions).

§10. On spaces of any number of dimensions.

10.1 The Projective Method or Modern Algebra (Theory of
Invariants).

10.2 The spaces of constant curvature.

10.3 Flat spaces.
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What is Geometry? EP / Notes

§Notes

V. On the so-called non-euclidean geometry.

... the axiom of parallels is not a mathematical consequence of the
other axioms usually assumed, but the expression of an
essentially new principle of space-perception [...]

... an important mathematical idea, –the idea of a space of
constant curvature.
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What is Geometry?
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What is Geometry? 1974: Views after one century
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What is Geometry? Current views
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What is Geometry? Current views

S. Xambó (RSME-UIMP) EP & GA 22-26 August, 2016 17 / 55



What is Geometry? Current views

1. S. Lie, a giant in mathematics (Lizhen Li)

2. Felix Klein: his life and mathematics (Lizhen Li)

3. Klein and the Erlangen Programme (Jeremy J. Gray)

4. Klein’s “Erlanger Programm”: do traces of it exist in physical
theories? (Hubert Goenner)

5. On Klein’s So-called Non-Euclidean geometry (Norbert
A’Campo, Athanase Papadopouloulos)

11. Three-dimensional gravity – an application of Felix Klein’s
ideas in physics (C. Meusburger)

12. Invariaces in physics and group theory (J.-B. Zuber)
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What is Geometry? A score card

A philosophy about what geometry is about and the role it
should play in Mathematics (Russo, Appendix to the French
edition of the EP).

In a geometry, the group becomes primary, the spaces on which
it acts secondary. One group may act on many different spaces.

Spaces that are quite different may be isomorphic geometries,
like the conformal geometry of the euclidean 3-space and the
hyperbolic geometry of dimension 4.

Algebraically, the geometric properties and relations are
expressed by invariants and covariants, which can be calculated
by the symbolic method.

Has fostered the discovery of many new geometries, and a
deepening into those already known.
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What is Geometry? A score card

Onishchik-Sulanke-2006 [2] (emphasis not in original):

“Projective geometry, and the Cayley-Klein geometries embedded
into it, are rather ancient topics of geometry, which originated in the
19th century with the work of V. Poncelet, J. Gegonne, Ch. v.
Staudt, A.-F. Möbius, A. Cayley, F. Klein, S. Lie, N. I.
Lobatschewski, and many others. [...] the most important classical
geometries arre systematically developed following the principles
founded by A. Cayley and F. Klein, which rely on distinguishing an
absolute and then studying the resulting invariants of geometric
objects. These methods, determined by linear algebra and the theory
of transformation groups, are just what it is needed in algebraic as
well as differential geometry. Furthemore, they may rightly be
considered as an integrating factor for the development of analysis,
where we mainly have in mind the harmonic or geometric analysis as
based on the thery of Lie groups.”
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Lie groups with GA
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Lie groups with GA Summary of notations from SX2

E = Er ,s : regular space of signature (r , s).

E
×

= E
×
r ,s : set of non-null (or invertible) vectors.

G = Gr ,s : the full geometric algebra of signature (r , s).

G+
= G+

r ,s : even subalgebra.

G× = G×r ,s group of invertible multivectors.

V = Vr ,s : versor group (subgroup of G× generated by E
×

).

V
+

= V
+

r ,s : even versor group, V ∩ G+
.

P = Pinr ,s : group of unit versors, or pinors (v ṽ = ±1).

S = Spinr ,s : group of even unit versors, or spinors.

S
+

= S
+

r ,s : spinors such that v ṽ = 1 (rotors).

O = Or ,s : orthogonal group (endoisometries of E ).

SO = SOr ,s : special O (proper endoisometries of E ).
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Lie groups with GA Summary of notations from SX2

ρ̃ : V → O, v 7→ v , v(x) = vαxv−1.
It is onto and ker(ρ̃) = R

×
(SX2/58).

ρ : V
+ → SO, v 7→ v , v(x) = vxv−1.

It is onto and ker(ρ) = R
×

.

ρ̃ : P → O, onto and ker(ρ̃) = {±1} (SX2/60).

ρ : S → SO, onto and ker(ρ) = {±1}.

Remark . Let SO
+

be the image of the map ρ : S
+ → SO. We will

see that SO
+

is the connected component of the identity of SO
except for (r , s) = (1, 1). Since for euclidean and anti-euclidean
spaces we have S = S

+
, we get that SOn is connected for all n.

Remark . ρ and ρ̃ are often called the adjoint (Ad) and twisted

adjoint (Ãd) representations.
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Lie groups with GA The Lipschitz approach to versors

The Lipschitz group of Er ,s , Γ = Γr ,s , is the subgroup of G× formed
by the invertible elements x ∈ G+ ∪ G− such that xEx−1 = E . We
clearly have that the versor group V = Vr ,s is a subgroup of Γ.

♦♦♦ Γ = V .

� Take x ∈ Γ and define x : E → E , e 7→ xαex−1, which is clearly
linear. In fact, x ∈ Or ,s (1). So we have a map ρ] : Γ→ Or ,s , x 7→ x .
This map is an onto homomorphism (2). Finally, the kernel of
ρ] : Γ→ Or ,s is R

×
(3). Now if x ∈ Γ and v ∈ V is such that

ρ](x) = ρ](v), then λ = xv−1 ∈ ker ρ] = R
×

and x = λv ∈ V .

1. q(xe) = (xe)2 = xαex−1xαex−1. But xα = ±x , hence
q(xe) = xex−1xex−1 = e2 = q(e).

2. It is onto because its restriction to Vr ,s is ρ̃, which is onto. And for
x , y ∈ Γ, xy(e) = (xy)αe(xy)−1 = xαyαey−1x−1 = x(ye) = (x y)(e).

3. If ρ](x) = 1, then xαe = ex for all vectors e. Hence e · x = 0 for all

vectors e and this implies that x is a scalar (vide SX2/59).
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Lie groups with GA The Lipschitz approach to versors

Remark . The equality Γ = V also gives ρ] = ρ̃.

♦♦♦ Any versor is the product of at most n (non-null) vectors.

� Let v be a versor. Then v is the product of at most n reflections:
v = muk

· · ·mu1 (uj ∈ E
×

). Since muj
= ρ̃(uj), we get

ρ̃(v) = v = ρ̃(u), where u = uk · · ·u1. Therefore
vu−1 = λ ∈ ker(ρ̃) = R

×
and hence v = uλ is the product of 6 n

vectors.

Remark . Since SO and O are isomorphic to matrix groups, they are
automatically Lie groups (Hall-2003 [3]). Then their double covers S
and P are also Lie groups. On the other hand, we have an onto
homomorphism R

× × S → V , (λ, v) 7→ λv with kernel
{(1, 1), (−1,−1)} and form this it follows that V is a Lie group.
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Lie groups with GA Primacy of the rotor group

♦♦♦ If (r , s) = (n, 0) or (r , s) = (0, n), then S = S
+

and P = S
+ t uS+

for any unit vector u.

� Let v = u1 · · ·uk ∈ P , where the uj are unit vectors. If k is even,
then v ∈ S and v ṽ = u2

1 · · ·u2
k = 1 (in the antieuclidean case the

product is (−1)k , which is 1 because k is even). So v ∈ S
+

. If k is
odd, then v = u(±uv), and ±uv ∈ S

+
.

If (r , s) > (1, 1), let u and ū be any unit vectors such that u2 = 1
and ū2 = −1. Notice that (uū)(uū)τ = −1. Then we have:

♦♦♦ S = S
+ t uūS

+
and P = S

+ t uS
+ t ūS

+ t uūS
+

.

� Plainly, S = S
+ t S

−
, where v ∈ S± ⇔ v ṽ = ±1, and it is easy to

check that w ∈ S
− ⇔ v = uūw ∈ S

+
. Similarly, uS

+
and ūS

+
are

the odd pinors v such that v ṽ = +1 and v ṽ = −1, respectively.
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Lie groups with GA Primacy of the rotor group

♦♦♦ If n 6 5, Spin+ = {R ∈ G+ |RR̃ = 1} (Lundholm-Svensson-2009
[4], Proposition 6.20).

� By definition, Spin+ is contained in {R ∈ G+ |RR̃ = 1}.
Let then R be an even multivector such that RR̃ = 1. To prove that
R ∈ Spin+, by the theorem on page 24 it is enough to see that
y = RxR̃ is a vector when x a vector.

Now ỹ = y , and for n 6 5 we must have, since y is odd,
y = y1 + y5. So we will be done if we show that y5 = 0.

Since this is obviously true if n < 5, we can assume that n = 5. In
this case y = y1 + λi , where i is the pseudoscalar. Then we have,
using that i is a central element,

λ = 〈RxR̃ i−1〉 = 〈Rxi−1R̃〉 = 〈xi−1R̃R〉 = 〈xi−1〉 = 0.

Remark . The statement above is not true for n > 6.
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Low dimension examples n = 1

Since the possible signatures are 1 ∼ (1, 0) and 1̄ ∼ (0, 1), we have

S1 = S
+

1 = S1̄ = S
+

1̄
.

In this case S
+

1 = {±1} and hence

S1 = {±1} ' Z2.

On the other hand

P1 = P1̄ = {±1,±e}.
This group is ' Z4 if e2 = −1 and ' Z2 × Z2 if e2 = 1.

Finally O1 = {±Id} and SO1 = {Id}, with ρ̃(±1) = Id and
ρ̃(±e) = −Id.

We note that S1 is not connected.
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Low dimension examples n = 2

The cases E2 and E2̄ are similar. If i is the unit area,
G+

= {α + βi |α, β ∈ R}. Since i 2 = −1 and i τ = −i ,
(α + βi)(α + βi)τ = α2 + β2 and

S2 = S2̄ = {α + βi |α2 + β2} = U1.

This is the circle group, which is connected but not simply connected
(going once around cannot be shrunk to 1; in fact, π1(U1) ' Z).

If e1 is any unit vector, then

P2 = P2̄ = S
+ t S

−
= U1 t e1U1,

and ρ̃(e1e
iθ) is the symmetry along v = e1e

iθ: −vvv−1 = −v .
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Low dimension examples n = 2

It remains, for dimension 2, to analise the lorentzian E1,1. Let e0, e1

by an orthonormal basis and i = e1e0 (we follow the convention of
placing the temporal vector on the vertical axis). We still have
G+

= {α + βi |α, β ∈ R} and (α + βi)τ = α− βi , but

(α + βi)(α + βi)τ = α2 − β2

because i 2 = 1. Thus

S
+

1,1 = {α + βi |α2 − β2 = 1}
and so S

+

1,1 has two connected components (the two branches of a

hyperbola in G+
, both simply connected because ' R, and

distinguished by the sign of α). The two branches are parameterized
by α = ε chλ, β = shλ (ε = ±1, λ ∈ R).

The action of R = Rε,λ = ε chλ + i shλ = εeεti on e0 and e1 can be
calculated straightforwardly, and we get:
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Low dimension examples n = 2

R(e0) = e0 ch 2ελ + e1 sh 2ελ,

R(e1) = e0 sh 2ελ + e1 ch 2ελ (1).

So Rε,λ and −Rε,λ = R−ε,−λ give the same rotation, as we know they

should, and SO
+

1,1 is isomorphic to R via the map (in matrix form)

t 7→ Ht =

(
ch 2t sh 2t
sh 2t ch 2t

)
,

for HtHt′ = Ht+t′ .

1 Use that i anticommutes with e0 and e1 and properties of ch , sh :

R(e0) = (ε chλ+ i shλ)e0(ε chλ− i shλ)
= e0(ε chλ− i shλ)(ε chλ− i shλ)
= e0( ch 2λ+ sh 2λ− 2εi shλ chλ)
= e0( ch 2λ− εi sh 2λ)
= e0 ch 2ελ+ e1i sh 2ελ.

The other equality is proved in a similar way.
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Low dimension examples n = 2

α2 − β2 = 1

α + βi

−(α + βi)

light cone

e1

R(e0)

e0

Since S
+

1,1 has two components, P1,1 has eight components. If we set
S+ε = {Rε,λ} (we can call right and left rotors according to whether
ε = + or ε = −), then the components are

S++, S+−, e0S
++, e0S

+−, e1S
++, e1S

+−, iS++, iS+−.

From this we get that O1,1 has four components:

SO
+

1,1,me1SO
+

1,1,me0SO
+

1,1, and me1me0SO
+

1,1 = −SO
+

1,1.
S. Xambó (RSME-UIMP) EP & GA 22-26 August, 2016 32 / 55



Low dimension examples n = 3

S3 = S3̄ = S
+

3 = S
+

3̄
= {α + xi3 |α2 + |x |2 = 1} = SU2 (unit

quaternions). Since SU2 is the 3-sphere, it is connected and simply
connected.

The 2:1 covering S3 → SO3 gives the classical 2:1 covering
SU2 → SO3 in which a unit quaternion u acts on E3 as x 7→ uxũ.

If we take for u the quaternion units i1 = e2e3, i2 = e3e1, i3 = e1ee ,
the corresponding isometries are the axial symmetries with respect to
e1, e2, e3, respectively.

The two components of P3 are S3 and uS3, where is any fixed unit
vector, and the two components of O3 are SO3 and muSO3. If f is a
rotation, and v = f −1(u), or f (v) = u, then muf is the symmetry
along v (or across v⊥).
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Constructing rotors Plane rotors

Given two unit vectors u and v , R = vu is a spinor. We will say that
it is the plane spinor defined by u and v . Since RR̃ = u2v 2, we see
that R is a rotor (in which case we will say that it is a plane rotor) if
and only if u2v 2 = 1, that is, if either u2 = v 2 = 1 or u2 = v 2 = −1.

♦♦♦ If R = vu is a plane rotor, then there exists β ∈ R, β > 0, and
ε ∈ {±1} such that R = εe−βu∧v .

� Let us start with R = u · v − u ∧ v . Replacing R by −R = (−u)v
if necessary, we may assume that u · v > 0. Since
(u ∧ v)2 = (u ∧ v) · (u ∧ v) = (u · v)2 − u2v 2 = (u · v)2 − 1, let us
distinguish the cases (I) (u · v)2 < 1 and (II) (u · v)2 − 1 > 0 (we
exclude u · v = 1 as it it implies R = 1).
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Constructing rotors Plane rotors

In case (I), there is α ∈ (0, π/2] such that u · v = cosα. This implies
that (u ∧ v)2 = − sin2 α and hence R = cosα− U sinα, with
U2 = −1 (U = u ∧ v/ sinα). Thus, finally, R = e−αU = e−βu∧v ,
β = α/ sinα.

In case (II), there is α ∈ R, α > 0, such that u · v = chα, which
implies that (u ∧ v)2 = sh 2α and hence R = chα− U shα, with
U2 = 1 (U = u ∧ v/ shα). Thus R = e−αU = e−βu∧v ,
β = α/ shα.

Remark . Letting α→ 0, we see that a plane rotor is connected to 1
or to −1. In other words, either R or −R is connected to 1.
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Constructing rotors Topology of the rotor group

♦♦♦ Any rotor R ∈ S
+

is path connected to 1 or to −1. If r > 2 or
s > 2, then any rotor is connected to 1 and, as a consequence, S

+
is

connected.

� Let R ∈ S
+

, say R = u1 · · ·u2k , with the uj unitary. It is easy to
see that we can reexpress R as a product of unit vectors in such a
way that all the negative ones appear after the positive ones (1).
Since both the number of positive terms and the number of negative
terms are even, R can be expressed as the product of k plane rotors.
Each of these rotors is path connected to 1 or to −1 and so the same
is true for R . In case r > 2 or s > 2, we can pick two unit vectors e1

and e2 of the same sign, so that (e1e2)2 = −1, and then the path
t 7→ ete1e2 connects 1 (t = 0) to −1 (t = π).

(1) If u and v are two unit vectors, then

vu = vuv−1v = −v(u)v = u ′v ,

and u ′ = −v(u) is a unit vector because v is an isometry.
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Constructing rotors Topology of the rotor group

♦♦♦ The 2 to 1 surjection Spinr ,s → SOr ,s is non-trivial if r > 2 or
s > 2.

� It will be enough to construct a path on Spinr ,s connecting 1 and
−1. To that end, let u1,u2 be an orthonormal pair of positive
(ε = 1) or negative (ε = −1) vectors. Now define s(t) ∈ Spinr ,s ,
t ∈ [0, π/2], as follows:

s(t) = (u1 cos(t) + u2 sin(t))(u1 cos(t)− u2 sin(t))

= ε cos2(t)− ε sin2(t)− u1u2 sin(t) cos(t) + u2u1 sin(t) cos(t)

= ε cos(2t)− u1u2 sin(2t).

Now it is clear that s(0) = ε and s(π/2) = −ε.
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Constructing rotors Infinitesimal rotors

We define an infinitesimal rotor as a tangent vector to the rotor
groups S

+
at 1.

♦♦♦ Any infinitesimal rotor is a bivector .

� By definition, any infinitesimal rotor has the form R ′(0), where
R(t) ∈ S

+
is defined and is differentiable for t in an open interval

around 0 and R(0) = 1. We want to prove that with these conditions
R ′(0) is a bivector.

Taking the derivative of R(t)R̃(t) with respect to t at 0, we get

R̃ ′(0) = −R ′(0). Since R ′(0) is an even multivector, this condition
shows that the possible grades r = 2j of R ′(0) are such that
r//2 = k must be odd, or r = 4k + 2, k > 0. So we find that
R ′(0) = b + z , where b is a bivector and the least grade of z is > 6.
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Constructing rotors Infinitesimal rotors

Now use that x(t) = R(t)eR̃(t) ∈ E for any fixed e ∈ E . Taking the
derivative at 0 we get

x ′(0) = R ′(0)e + eR̃ ′(0)

= (b + z)e − e(b + z)

= be − eb + ze − ez

= 2b · e + 2z · e.

Since x ′(0) and b · e are vectors and the least grade of z · e is > 5,
we get that z · e = 0. Since e is any vector, this implies that z = 0
(SX2/58).

To prove that any bivector is an infinitesimal rotor, we have to work a
bit more.
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Constructing rotors Infinitesimal rotors

Let B ∈ G2 be a bivector, and define the linear map adB : G → G by
the formula adB(x) = Bx − xB = [B , x ].

♦♦♦ adB is a grade preserving derivation of the geometric product.

� It is clear that adB vanishes on scalars and in the previous lecture
we saw that adB maps vectors to vectors. If now x ∈ Gr , r > 2, then
Bx = B · x + 〈Bx〉r + F ∧ x and xB = x · B + 〈xB〉r + x ∧ B . But in
this case x · B = B · x and x ∧ B = B ∧ x , and hence
[B , x ] = 〈Bx〉r − 〈xB〉r , which is an r -vector.

And adB is derivation:
adB(xy) = Bxy−xyB = Bxy−xBy+xBy−xyB = adB(x)y+xadB(y).
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Constructing rotors Infinitesimal rotors

♦♦♦ Let so(E ) ⊆ End(E ) be the linear subspace of skew-symmetric
endomorphisms. Then adB ∈ so(E ) and the map B 7→ adB provides
a natural isomorphism G2 ' so(E ).

� Since adB(e) = 2B · e, we have

adB(e) · e ′ = 2(B · e) · e ′ = 2B · (e ∧ e ′).

Similarly,
e · adB(e ′) = 2e · (B · e ′) = −2e · (e ′ · B)
= −2(e ∧ e ′) · B = −2B · (e ∧ e ′).

Therefore adB(e) · e ′ = e · (−adB(e ′)), or ad†B = −adB .

Since adB(e) = −2e · B , the kernel of the map G2 → so(E ) consists
of the bivectors B such that e · B = 0 for all vectors e, and we know
that this implies B = 0 (SX2/58). Therefore, the map is injective.
Now the image is so(E ) because dim so(E ) =

(
n
2

)
= dimG2.

Example. If B = x ∧ y , adB(e) = 2((e · y)x − (e · x)y).
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Constructing rotors Infinitesimal rotors

Example. If f ∈ so, then f = adB , where B = 1
4

∑
k f (ek) ∧ ek ,

where e1, . . . , en ∈ E is a basis and e1, . . . , en is the reciprocal basis
(defined by the relations e j · ek = δjk).

Let f (ej) =
∑

l ajlel . We will show that adB(ej) = f (ej) for
j = 1, . . . , n. Indeed,

adB(ej) = 1
2

∑
k(ek · ej)f (ek)− 1

2

∑
k(f (ek) · ej)ek .

It is clear that the first term is 1
2
f (ej). As for the second, it is equal

to 1
2

∑
k(ek · f (ej))ek (for f is skew-symmetric) and∑

k(ek · f (ej))ek =
∑

k(
∑

lajlgkl)e
k =

∑
lajl
∑

kgkle
k = f (ej)

where gkl = ek · el and hence
∑

kgkle
k = el .
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Constructing rotors Exponential of a bivector

♦♦♦ For any bivector B ∈ G2, ±eB ∈ S
+

([4], Th. 6.17).

� It is clear that R = eB is an even multivector. Moreover, R ∈ G× ,
for RR̃ = eBeB̃ = eBe−B = 1. By the theorem on page 24, to see
that R ∈ V it is enough to prove that RxR̃ ∈ E for any x ∈ E .

Let W = E⊥ be the q-orthogonal of E in G, that is,
W = R⊕G2 ⊕ · · · ⊕ Gn. Pick any x ∈ E and any y ∈ W , and define
the map f : R→ R by the formula f (t) = q(etBxe−tB , y). The
derivatives of f have the following form:

f ′(t) = q(BetBxe−tB − etBxe−tBB , y) = q([B , etBxe−tB ], y)

f ′′(t) = q([B ,BetBxe−tB−etBxe−tBB], y) = q([B , [B , etBxe−tB ], y ])

and so on. Setting t = 0, we obtain

f (k)(0) = q(adk
B(x), y) = 0, because adB is an endomorphism of E .

Thus f ≡ 0, as f is real analytic, and therefore q(etBxe−tB , y) = 0
and etBxe−tB ∈ W⊥ = E .
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Constructing rotors Exponential of a bivector

♦♦♦ If B ∈ G2, then B is an infinitesimal rotor.

� By the preceding result, R(t) = etB ∈ S
+

for all t and

R ′(0) = B .

The commutator [B ,B ′] = BB ′ − B ′B of two bivectors is a bivector.
This follows from the grade decomposition

BB ′ = B · B ′ + 〈BB ′〉2 + B ∧ B ′

and the fact that B · B ′ = B ′ · B and B ∧ B ′ = B ′ ∧ B . Now it is a
straigtfoward exercise to show that G2 with the commutator [B ,B ′] is
a Lie algebra.

♦♦♦ Regarding G2 as the tangent space to S
+

at 1, the commutator is
identified with the Lie bracket of infinitesimal rotors. In other words,
G2 is canonically isomorphic to Lie(S

+
).
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Constructing rotors Exponential of a bivector

♦♦♦ In the euclidean and lorentzian cases, every bivector F can be
written as a sum of commuting 2-blades:

F = F1 + · · ·+ Fp (2p 6 n)

where each Fj is a non-zero 2-blade, FjFk = FkFj for all j , k .

It follows that
eF = eF1 · · · eFp

which means that every rotor can be factored as a product of plane
commuting rotors.

Remark . For additional details about the Euclidean case, see SX2/69.
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Constructing rotors On a theorem of Riesz

Let E = Er ,s , n = r + s, and L ∈ SO+
r ,s (this is the connected

component of the identity of SOr ,s).

♦♦♦1 If (r , s) is of one of the forms (n, 0), (0, n), (1, n − 1) or
(n − 1, 1), there exists a bivector B ∈ G2 such that

Lx = e−BxeB . (1)

This result is false for any other signature.

♦♦♦2 If B ′ is another bivector such that e−B
′
xeB

′
= e−BxeB for all

vectors x , then eB
′

= ±eB .

� See Riesz-1958 [5], §4.12. Here let us just notice that it is not
effective in the sense that it does not provide clues about how to
relate the specific geometric properties of L to the algebraic properties
of B . Note also that these ‘specifics’ are dealt with in detail in other
lectures for signatures such as (1, 3) (STA) and (4, 1) (CGA).
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Constructing rotors On a theorem of Riesz

Remark . The differencial of the map exp : G2 → S
+

at 0 is the
identity. Therefore, an open neighborhood of 0 in G2 is mapped
diffeomorphically to an open neighborhood U of 1 in S

+
. So any

u ∈ U has the form eB , B a bivector. The results of the previous
page tell us that if r , s > 2, then there are rotors that are not the
exponential of a bivector. On the other hand, since the subgroup
generated by U is open, it follows that any rotor is the product of
expoenentials of bivectors, or a limit of such products, and that at
least two exponentials are needed to get any other rotor.
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Outshoots of the EP
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Outshoots of the EP Cartan geometries

Recommeded reference: Sharpe-1997 [6] (“[...] a stydy of an aspect
of Elie Cartan’s contribution to the question “What is Geometry?”)

The main contribution of Cartan in that respect (his espaces
généralizés, now called Cartan geometries) was a unification of the
Cayley-Klein-Lie geometries (the basic structure is a coset space G/H
of Lie groups) with (Riemannian geometry , Riemann-1944, the other
main generalization of Euclidean geometry).

Yang-1977 [7]: “That non-abelian gauge fields are conceptually
identical to ideas of the beautiful theory of fibre bundles developed by
mathamaticians without reference to the physical world, was a great
marvel to me.”
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Outshoots of the EP Cartan geometries
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Outshoots of the EP Some introductory readings

WP/Principal bundle “Principal bundles have important
applications in topology and differential geometry. They have
also found application in physics where they form part of the
foundational framework of gauge theories.”

WP/Gauge thery “In physics, a gauge theory is a type of field
theory in which the Lagrangian is invariant under a continuous
group of local transformations.
The term gauge refers to redundant degrees of freedom in the
Lagrangian. The transformations between possible gauges, called
gauge transformations, form a Lie group—referred to as the
symmetry group or the gauge group of the theory. Associated
with any Lie group is the Lie algebra of group generators.
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Outshoots of the EP Some introductory readings

For each group generator there necessarily arises a corresponding
field (usually a vector field) called the gauge field. Gauge fields
are included in the Lagrangian to ensure its invariance under the
local group transformations (called gauge invariance). When
such a theory is quantized, the quanta of the gauge fields are
called gauge bosons. If the symmetry group is non-commutative,
the gauge theory is referred to as non-abelian, the usual example
being the Yang–Mills theory.”

Tot està per fer,
tot és possible

Todo está por hacer,
todo es posible

All is to be done,
all is possible
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