17th "Lluís Santaló" Research School ## Enriching Abstract Algebra with GA RSME-UIMP 22-26 August, 2016 #### ENRICHING ABSTRACT ALGEBRA WITH GA - Introduction. Goodman's book. Artin's book. - Classification of the $\mathcal{G}_{r,s}$. Even algebra isomorphisms. The basic ingredients. A corner of the Clifford chessboard. Induction formulas. The full chessboard. Periodicity mod 8. The classification theorem. The complex case. - Pin and Spin representations. Behaviour of $\mathbf{i}_{r,s}$. Basic notions. Irreducible representations of $\mathbf{K}(n)$. Pinor representations. Pinor synopsis. Spinor representations. Spinor synopsis. Tables for $0 \le n \le 7$. - References. Porteous-1995 [1]. Figueroa-2006 [2]. Garling-2011 [3]. ## Introduction # ALGEBRA ABSTRACT AND CONCRETE **EDITION 2.6** FREDERICK M. GOODMAN SemiSimple Press Iowa City, IA Last revised on May 1, 2015. #### Bookmarks Preface The Price of this Book A Note to the Reader ■ Chapter 1. Algebraic Themes ⊞- Chapter 3. Products of Groups ■ Chapter 4. Symmetries of Polyhedra Chapter 6, Rings ■ Chapter 9. Field Extensions – Second Look Chapter 10. Solvability ■ Chapter 11. Isometry Groups ■ P Appendix A. Almost Enough about Logic ■ P Appendix B. Almost Enough about Sets ■ P Appendix C. Induction Appendix D. Complex Numbers ■ P Appendix E. Review of Linear Algebra Appendix F. Models of Regular Polyhedra Appendix G. Suggestions for Further Study Index ### Download from the author's page: F. M. Goodman "For further study of group theory, my own preference is for the theory of representations and applications. I recommend - W. Fulton and J. Harris, *Representation Theory, A First Course*, Springer-Verlag, 1991. - B. Simon, Representations of Finite and Compact Groups, American Mathematical Society, 1996. - S. Sternberg, *Group Theory and Physics*, Cambridge University Press, 1994. These books are quite challenging, but they are accessible with a knowledge of this course, linear algebra, and undergraduate analysis." ### Contents - Matrices - Groups - Vector Spaces - **Linear Operators** - **Applications of Linear Operators** - 6 Symmetry - Discrete Groups of Isometries 6.5 - Plane Crystallographic Groups 6.6 - Finite Subgroups of the Rotation Group 6.12 - 7 More Group Theory - Bilinear Forms - Linear Groups - 9.1 The Classical Groups - 9.2 Interlude: Spheres - 9.3 The Special Unitary Group SU2 Normal Subgroups of SL2 - 9.4 The Rotation Group SO2 - 10 Group Representations - Irreducible Representations - 10.3 Unitary Representations - 10.9 Representations of SU_2 - 11 Rings - 12 Factoring - 13 Quadratic Number Fields - 14 Linear Algebra in a Ring - 15 Fields - 16 Galois Theory #### APPENDIX #### **Background Material** - A.1 About Proofs - A.2 The Integers - Zorn's Lemma A.3 - A.4 The Implicit Function Theorem 9.8 "In writing this book, I tried to follow these principles: - 1. The basic examples should precede the abstract definitions. - 2. Technical points should be presented only if they are used elsewhere in the book - **3.** All topics should be important for the average mathematician. Although these principles may sound like motherhood and the flag, I found it useful to have them statete explicitly. They are, of course, violated here and there " One may ask: What about topics not covered that may be important [for the average mathematician and very relevant for an Abstract Algebra Course? # Classification of the $\mathcal{G}_{r,s}$ In all cases, we set $X_n = X_{n,0}$, $\bar{X}_n = X_{\bar{n}} = X_{0,n}$ ($X_n(\mathbf{C})$ in the complex case), where $X_{r,s}$ stands for any of the symbols defined in prevoious lectures. O, SO, SO $$^+$$, \mathcal{G} , \mathcal{G}^{\times} , $\Gamma=V$, $\Gamma^+=V^+$, Pin, Spin, Spin $^+$. Note X_n and $X_{\bar{n}}$ point to difference structures, as for example \mathcal{G}_n and $\mathcal{G}_{\bar{n}}$. The exceptions are O and SO, for it is plain that $O_n = O_{\bar{n}}$ and $SO_n = SO_{\bar{n}}$. - \Diamond For any signature (r,s), $C_{r,s} \simeq C_{r,s+1}^+ \simeq C_{s+1,r}^+$. - □ Take a standard basis of $C_{r,s+1}$ of the form γ_j $(j=1,\ldots,r)$, $\bar{\gamma}_k$ $(k=1,\ldots,s+1)$ and write $\bar{\gamma}=\bar{\gamma}_{s+1}$. Now consider the elements $\Gamma_j=\bar{\gamma}\gamma_j$ $(j=1,\ldots,r)$ and $\bar{\Gamma}_k=\bar{\gamma}\bar{\gamma}_k$ $(k=1,\ldots,s)$. These elements belong to $C_{r,s+1}^+$, are linearly independent, anticommute and satisfy the standard relations for the signature (r,s): $\Gamma_j^2=1$ $(j=1,\ldots,r)$ and $\bar{\Gamma}_k^2=-1$ $(k=1,\ldots,s)$. This implies that $C_{r,s}\simeq C_{r,s+1}^+$. For the other isomorphism, take a standard basis of $C_{s+1,r}$ of the form γ_k $(k=1,\ldots,s+1)$, $\bar{\gamma}_j$ $(j=1,\ldots,r)$ and write $\gamma=\gamma_{r+1}$. Now consider the elements $\Gamma_j=\gamma\bar{\gamma}_j$ $(j=1,\ldots,r)$ and $\bar{\Gamma}_k=\gamma\gamma_k$ $(k=1,\ldots,s)$. These elements belong to $C_{s+1,r}^+$, are linearly independent, anticommute and satisfy the standard relations for the signature (r,s): $\Gamma_j^2=1$ $(j=1,\ldots,r)$ and $\bar{\Gamma}_k^2=-1$ $(k=1,\ldots,s)$. This implies the isomorphism $C_{r,s}\simeq C_{s+1,r}^+$. - \lozenge If s>0, then $C_{r,s}^+\simeq C_{r,s-1}$. - \lozenge If r > 0, then $C_{r,s}^+ \simeq C_{s,r-1}$. - \lozenge If n>0, then $C_n^+\simeq ar{C}_{n-1}$ and $ar{C}_n\simeq C_{n-1}.$ *Notations*. **K** will denote one of the fields **R** (real field), **C** (complex field) and **H** (quaternion field). For any integer $n \ge 2$, **K**(n) will denote the ring of $n \times n$ matrices with coefficients in **K**. Since $\mathbf{K}(n) = \mathbf{K} \otimes \mathbf{R}(n)$, its real dimension is $d_{\mathbf{K}} n^2$, where $d_{\mathbf{K}} = \dim_{\mathbf{R}} \mathbf{K} = 1, 2, 4$, respectively. *Note*: $\mathbf{K}(m) \otimes \mathbf{R}(n) \simeq \mathbf{K}(mn)$. - $\lozenge 1 \ \mathsf{C} \otimes \mathsf{C} \simeq \mathsf{C} \oplus \mathsf{C}$ - $\diamond 2 \mathbf{C} \otimes \mathbf{H} \simeq \mathbf{C}(2)$ - \lozenge 3 H \otimes H \simeq R(4) □1 Since $(i \otimes i)^2 = 1 \otimes 1$, the elements $e_{\pm} = \frac{1}{2}(1 \otimes 1 \pm i \otimes i)$ are idempotents with $e_+ + e_- = 1 \otimes 1$ and $e_+ e_- = e_- e_+ = 0 \otimes 0$. Then the map $\mathbf{C} \oplus \mathbf{C} \to \mathbf{C} \otimes \mathbf{C}$, $(x,y) \mapsto xe_+ + ye_-$, satisfies $(xe_+ + ye_-)(x'e_+ + y'e_-) = xx'e_+ + yy'e_-$ and with this it is easy to prove that it is an isomorphism. $$z_2 z_1 h \overline{q}_1 \overline{q}_2 = (z_1 z_2) h \overline{q_2 q_1}. \tag{1}$$ It can be checked that this map sends the basis $\{1,i\} \otimes \{1,I,J,K\}$ into linearly independent endomorphisms, and hence the map is an isomorphism, for both sides have dimension 8. Finally note that $\operatorname{End}_{\mathbf{C}}(\mathbf{H}) \simeq \operatorname{End}_{\mathbf{C}}(\mathbf{C}^2) \simeq \mathbf{C}(2)$. □3 If $q_1, q_2 \in \mathbf{H}$, define $f_{q_1,q_2} : \mathbf{H} \to \mathbf{H}$ by $f_{q_1,q_2}(h) = q_1 h \bar{q}_2$. In this way we get, as in 2), an algebra homomorphism $\mathbf{H} \otimes \mathbf{H} \to \operatorname{End}(\mathbf{H})$ which can be shown to be an isomorphism (both sides have dimension 16). Finally $\operatorname{End}(\mathbf{H}) \simeq \operatorname{End}(\mathbf{R}^4) \simeq \mathbf{R}(4)$. algebra homomorphism, for We are aiming at giving isomorphic descriptions of $C_{r,s}$ and $C_{r,s}^+$ in terms of basic algebra forms. It will turn out that it is enough to achieve this for $0 \le r, s \le 7$. So we will first look at how to fill in the slots in this 8×8 *chessboard*. The main tools will be the explicit description of $C_{r,s}$ for slots close to the corner (0,0), which contains $C_{0,0} = \mathbf{R}$, and three *inductive* formulas. Let us begin with the slots near (0,0): | $r \setminus s$ | 0 | 1 | 2 | |-----------------|--------------|--------------|---| | 0 | R | С | Н | | 1 | $R \oplus R$ | R (2) | | | 2 | R (2) | | | $\bar{C}_1\simeq {\bf C}_1$. In fact in this case the pseudoscalar ${\it i}$ is a vector, $\bar{C}_1=\langle 1,{\it i}\rangle$ and ${\it i}^2=-1$. $\bar{\mathcal{C}}_2 \simeq \mathbf{H}$. If e_1, e_2 is an orthonormal basis, $\bar{\mathcal{C}}_2 = \langle 1, e_1, e_2, e_1 e_2 \rangle$ and the linear isomorphism $1, e_1, e_2, e_1 e_2 \mapsto 1, I, J, K$ is an algebra isomorphism. $C_{1,0} = C_1 \simeq \mathbf{R} \oplus \mathbf{R}$. If e is a unit vector, $C_1 = \langle 1, e \rangle$ with $e^2 = 1$. The elements $e_+ = (1+e)/2$ and $e_- = (1-e)/2$ satisfy $e_+^2 = e_+$, $e_-^2 = e_-$ and $e_+e_- = 0$. It follows that the map $\mathbf{R} \oplus \mathbf{R} \to C_1$, $(\alpha, \beta) \mapsto \alpha e_+ + \beta e_-$ is an isomorphism. $C_{1,1} \simeq \mathbf{R}(2)$. Let e_1, e_2 be an orthonormal basis. Then $C_{1,1} = \langle 1, e_1, e_2, e_1 \epsilon_2 \rangle$. Consider the linear map $C_{1,1} \to \mathbf{R}(2)$ given by $1, e_1, e_2, e_1 e_2 \mapsto I_2, E_1, E_2, E_3$, where $$\textit{E}_1 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}, \textit{E}_2 = \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}, \textit{E}_3 = \begin{pmatrix} & -1 \\ -1 & \end{pmatrix}.$$ This map is a linear isomorphism, because I_2 , E_1 , E_2 , E_3 are linearly independent, and since $E_1^2 = I_2$, $E_2^2 = -I_2$ and $E_3 = E_1 E_2$, it is also an algebra isomorphism. $C_{2,0} = C_2 \simeq \mathbf{R}(2)$. Like $C_{1,1}$, but using $$\textit{E}_1 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}, \textit{E}_2 = \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}, \textit{E}_3 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix}.$$ - $\Diamond 1 \ C_{r+2} \simeq \bar{C}_r \otimes C_2 \simeq \bar{C}_r \otimes \mathsf{R}(2).$ - $\Diamond 2 \ \bar{C}_{r+2} \simeq {\it C}_r \otimes \bar{C}_2 \simeq {\it C}_r \otimes {\it H}$ - $\Box 1$ Let $\bar{\gamma}_1, \ldots, \bar{\gamma}_r$ be standard generators of \bar{C}_r , so $\bar{\gamma}_k^2 = -1$, and γ_1, γ_2 standard generators of C_2 , so $\gamma_1^2 = \gamma_2^2 = 1$. Let $i_2 = \gamma_1 \gamma_2$, so that $i_2^2 = -1$. - Consider the elements $\Gamma_k \in \bar{C}_r \otimes C_2$ defined by $\Gamma_k = \bar{\gamma}_k \otimes i_2$ (k = 1, ..., r), and $\Gamma_{r+\ell} = 1 \otimes \gamma_\ell$ $(\ell = 1, 2)$. - The Γ_j $(j=1,\ldots,r+2)$ are linearly independent and satisfy the relations of a standard basis of C_{r+2} . So we have an injective homomorphism $C_{r+2} \to \bar{C}_r \otimes C_2$, which must be an isomorphism because both algebras have dimension 2^{r+2} . Consider the elements $\bar{\Gamma}_k \in C_r \otimes \bar{C}_2$ defined by $\bar{\Gamma}_k = \gamma_k \otimes i_2$ $(k = 1, \ldots, r)$, and $\bar{\Gamma}_{r+\ell} = 1 \otimes \bar{\gamma}_\ell$ $(\ell = 1, 2)$. The $\bar{\Gamma}_j$ $(j=1,\ldots,r+2)$ are linearly independent and satisfy the relations of a standard basis of \bar{C}_{r+2} . So we have an injective homomorphism, $\bar{C}_{r+2} \to C_r \otimes \bar{C}_2$, which must be an isomorphism because both algebras have dimension 2^{r+2} . $\square 3$ Let $\gamma_1,\ldots,\gamma_r,\bar{\gamma}_1,\ldots,\bar{\gamma}_s$ be standard generators of $C_{r,s}$: $\gamma_j^2=1$ $(j=1,\ldots,r)$ and $\bar{\gamma}_k^2=-1$ $(k=1,\ldots,s)$. Let $\gamma,\bar{\gamma}$ be standard generators of $C_{1,1}$ $(\gamma^2=1,\,\bar{\gamma}^2=-1)$ and let $i_2=\gamma\bar{\gamma}$, so that $i_2^2=1$. Consider the elements Γ_j and $\bar{\Gamma}_k$ of $C_{r,s} \otimes C_{1,1}$, $j=1,\ldots,r+1$, $k=1,\ldots,s+1$, defined as $\Gamma_j=\gamma_j\otimes i_2$ $(j=1,\ldots,r)$, $\Gamma_{r+1}=1\otimes \gamma$, $\bar{\Gamma}_k=\bar{\gamma}_k\otimes i_2$ $(k=1,\ldots,r)$ and $\bar{\Gamma}_{s+1}=1\otimes \bar{\gamma}$. The $\Gamma_1, \ldots, \Gamma_{r+1}, \bar{\Gamma}_1, \ldots, \bar{\Gamma}_{s+1}$ are linearly independent and satisfy the relations of a standard basis of $C_{r+1,s+1}$. Now argue as in the previous cases. *Remark*. The C_r and C_r , r = 0, ..., 7, fill the chessboard 0-th column and 0-th row, respectively, and $\Diamond 1$ and $\Diamond 2$, page 18, say that if for either one we know the values up to r, then we can know the values of the other up to r + 2. Since we know the values up to r=2 for both of them, the determination of the other values can be carried out, for example, as follows: $$C_3 \simeq \bar{C}_1 \otimes \mathbf{R}(2) \simeq \mathbf{C} \otimes \mathbf{R}(2) \simeq \mathbf{C}(2); C_4 \simeq \bar{C}_2 \otimes \mathbf{R}(2) \simeq \mathbf{H}(2);$$ $\bar{C}_3 \simeq C_1 \otimes \mathbf{H} \simeq \mathbf{H} \oplus \mathbf{H}; \bar{C}_4 \simeq C_2 \otimes \mathbf{H} \simeq \mathbf{H}(2);$ $\bar{C}_5 \simeq C_3 \otimes \mathbf{H} \simeq \mathbf{C}(2) \otimes \mathbf{H} \simeq \mathbf{C}(4)$ (use the \diamond s on page 13); $\bar{C}_6 \simeq C_4 \otimes \mathbf{H} \simeq \mathbf{H}(2) \otimes \mathbf{H} \simeq \mathbf{R}(8)$ (again by the \diamond s on page 13); $C_5 \simeq \bar{C}_3 \otimes \mathbf{R}(2) \simeq \mathbf{H}(2) \oplus \mathbf{H}(2); C_6 \simeq \bar{C}_4 \otimes \mathbf{R}(2) \simeq \mathbf{H}(4);$ $C_7 \simeq \bar{C}_5 \otimes \mathbf{R}(2) \simeq \mathbf{C}(8); \bar{C}_7 \simeq C_5 \otimes \mathbf{H} \simeq \mathbf{R}(8) \oplus \mathbf{R}(8).$ Now use the recursive formulas on page 18 to fill in the rest: #### Classification of the $G_{r,s}$ The full chessboard | $r \setminus s$ | 0 | 1 | 2 | 3 | |-----------------|--------------------|-----------------------------|------------------------------------|--------------------| | 0 | R | С | Н | $H \oplus H$ | | 1 | $R \oplus R$ | R (2) | C (2) | H (2) | | 2 | R (2) | $R(2) \oplus R(2)$ | R (4) | C (4) | | 3 | C (2) | R (4) | $R(4) \oplus R(4)$ | R (8) | | 4 | H (2) | C (4) | R (8) | $R(8) \oplus R(8)$ | | 5 | $H(2) \oplus H(2)$ | H (4) | C (8) | R (16) | | 6 | H (4) | H (4) ⊕ H (4) | H (8) | C (16) | | 7 | C (8) | H (8) | H (8) \oplus H (8) | H (16) | | r\s | 4 | 5 | 6 | 7 | |-----|----------------------|-------------------------------|-------------------------------|-----------------------------| | 0 | H (2) | C (4) | R (8) | R (8) ⊕ R (8) | | 1 | $H(2) \oplus H(2)$ | H (4) | C (8) | R (16) | | 2 | H (4) | H (4) ⊕ H (4) | H (8) | C (16) | | 3 | C (8) | H (8) | H (8) ⊕ H (8) | H (16) | | 4 | R (16) | C (16) | H (16) | $H(16) \oplus H(16)$ | | 5 | $R(16) \oplus R(16)$ | R(32) | C (32) | H (32) | | 6 | R(32) | R (32) ⊕ R (32) | R (64) | C (64) | | 7 | C (32) | R (64) | R (64) ⊕ R (64) | R(128) | - \square \lozenge 1 and \lozenge 2 on page 18 allow us to write: $$C_{n+8} \simeq \bar{C}_{n+6} \otimes C_2 \simeq C_{n+4} \otimes \bar{C}_2 \otimes C_2$$ $$\simeq \bar{C}_{n+2} \otimes C_2 \otimes \bar{C}_2 \otimes C_2$$ $$\simeq C_n \otimes \bar{C}_2 \otimes C_2 \otimes \bar{C}_2 \otimes C_2$$ Now we have, using the chessboard and $\lozenge 3$ on page 13, $$ar{\mathcal{C}}_2 \otimes \mathcal{C}_2 \otimes ar{\mathcal{C}}_2 \otimes \mathcal{C}_2 \simeq \mathsf{H} \otimes \mathsf{R}(2) \otimes \mathsf{H} \otimes \mathsf{R}(2)$$ $$\simeq \mathsf{H} \otimes \mathsf{H} \otimes \mathsf{R}(4)$$ $$\simeq \mathsf{R}(4) \otimes \mathsf{R}(4) \simeq \mathsf{R}(16).$$ With this we conclude the proof of $\lozenge 1$. The proof of $\lozenge 2$ follows the same pattern as the proof for $\lozenge 1$: $$\bar{C}_{n+8} \simeq C_{n+6} \otimes \bar{C}_2 \simeq \bar{C}_{n+4} \otimes C_2 \otimes \bar{C}_2 \simeq C_{n+2} \otimes \bar{C}_2 \otimes C_2 \otimes \bar{C}_2 \simeq \bar{C}_n \otimes C_2 \otimes \bar{C}_2 \otimes C_2 \otimes \bar{C}_2$$ and clearly $C_2 \otimes \bar{C}_2 \otimes C_2 \otimes \bar{C}_2 \simeq \mathbf{R}(16)$. The proof of $\lozenge 3$ is simpler: it suffices to apply the rule $\lozenge 3$ on page 18 four successive times to conlude that $$C_{r+4,s+4} \simeq C_{r,s} \otimes \mathbf{R}(2)^{\otimes 4} \simeq C_{r,s} \otimes \mathbf{R}(16).$$ Reduction to the chessboard. Given r, s, let $m = \min(r, s)$ and k the greatest non-negative integer such that $4k \le m$. Let r' = r - 4k, s' = s - 4k and $m' = m - 4k = \min(r', s')$. Then $\lozenge 3$ on page 23 tells us that $C_{r,s} \simeq C_{r',s'} \otimes \mathbf{R}(16^k)$ and by $\lozenge 3$ on page 18, that $C_{r',s'} \simeq C_{r'',s''} \otimes \mathbf{R}(2^{m'})$, with r'' = r' - m', s'' = s' - m', or $C_{r,s} \simeq C_{r'',s''} \otimes \mathbf{R}(2^{m'}16^k)$. Since either s'' = 0 (when $s \le r$) or r'' = 0 (when $r \le s$), we see that $C_{r,s} \simeq C_{r''}$ (when $r \le s$). The integer $\nu=r-s\mod 8$ is clearly invariant in the reduction process. It follows that $C_{r,s}\simeq C_{\nu}\otimes \mathbf{R}(d)$ if $r\geqslant s$ and $C_{r,s}\simeq \bar{C}_{8-\nu}\otimes \mathbf{R}(d')$ if r< s, where d and d' are positive integers. Now in the 15 algebras C_{ν} ($\nu=0,\ldots,7$) and $\bar{C}_{8-\nu}$ ($\nu=1,\ldots,7$) there appear exactly 5 forms (up to tensoring by $\mathbf{R}(2^m)$, for some m): | ν | 0, 2 | 1 | 3, 7 | 4, 6 | 5 | |-------|------|--------------|------|------|--------------| | Form | R | $R \oplus R$ | С | Н | $H \oplus H$ | ### Algorithm While $r, s \ge 4$, jump to r - 4, s - 4 and update the matrix factor by **R**(16). So we may assume $\min(r, s) \leq 3$. While $r, s \ge 1$, jump to r - 1, s - 1 and update the matrix factor by $\mathbf{R}(2)$. After at most three steps, we are going to hit the C_n boundary or the C_n . While $n \ge 8$, jump to the slot n-8 along the boundary and update the matrix factor by $\mathbf{R}(16)$. So we may assume that we have landed on C_n or \overline{C}_n with $0 \le n \le 7$. Output: Let $\nu = r - s \mod 8$ and define $d_k = 2^{(n-k)/2}$. for $k = 0, \dots, 4$ (in each usage below, d_k is an integer). Then return the algebra F(d) indicated by the following table: Now the isomorphisms $C_{r,s}^+ \simeq C_{r,s-1}$ if s>0 and $C_n^+ \simeq \bar{C}_{n-1}$ imply that the form F_{ν}^+ of $C_{r,s}^+$ is $F_{\nu+1}$ (in all cases), and so: | ν | 1,7 | 0 | 2,6 | 3, 5 | 4 | |----------------|-------|--------------|-------|-------|--------------| | F ⁺ | R | $R \oplus R$ | С | Н | $H \oplus H$ | | d^+ | d_1 | d_2 | d_2 | d_3 | d_4 | That the d's are as claimed follows by counting dimensions. The dimension of $C_{r,s}$ is 2^n , and the dimensions of the five forms are | Form | R (<i>m</i>) | $R(m) \oplus R(m)$ | C (<i>m</i>) | H (<i>m</i>) | $H(m) \oplus H(m)$ | |-----------------------|-----------------------|--------------------|-----------------------|-----------------------|-------------------------| | <i>d</i> (<i>m</i>) | m^2 | $2m^2$ | $2m^2$ | $4m^2$ | 8 <i>m</i> ² | Solving for m in the equation $2^n = d(m)$ we get the claimed expressions. For example, if $2^n = 8m^2$, then $m^2 = 2^{n-3}$ and hence $m=2^{(n-3)/2}=d_3$. | <i>n</i> mod 2 | C_n | C_n^+ | |----------------|--------------------------------|------------------------------------------| | 0 | $\mathbf{C}(d_0)$ | $\mathbf{C}(d_2) \oplus \mathbf{C}(d_2)$ | | 1 | ${f C}(d_1) \oplus {f C}(d_1)$ | $\mathbf{C}(d_3)$ | # Pin and Spin representations Let n = r + s and $\nu = r - s \mod 8$. We defined $d_k = 2^{(n-k)/2}$ (it will be used for k = 0, 1, ..., 4 and in cases that will guarantee that (n - k)/2 is an integer). Let $\mathbf{i} = \mathbf{i}_{r,s}$ be the pseudoscalar (volume element) of $C_{r,s}$. \$\lambda 1 \quad i^2 = (-1)^{s+n//2} = (-1)^{(r-s)//2} = (-1)^{\nu//2}\$. Thus $$\mathbf{i}^2 = 1 \quad \text{if} \quad \nu \equiv 0, 1 \mod 4$$ $\mathbf{i}^2 = -1 \quad \text{if} \quad \nu \equiv 2, 3 \mod 4$ **\Qquad** 2 For any vector \mathbf{e} , $\mathbf{e}\mathbf{i} = (-1)^{n-1}\mathbf{i}\mathbf{e}$. Therefore, \mathbf{i} is central if n is odd and anticommutes with vectors if n is even (so it anticommutes with odd multivectors and commutes with even multivectors). Since $n \equiv \nu \mod 2$, we can use ν instead of n. Let **K** be one of the fields **R**, **C**, **H**. A **K**-representation of a *real* algebra A is an **R**-linear homomorphism $\rho: A \to \operatorname{End}_{\mathbf{K}}(E)$ for some **K**-vector space E. Equivalent K-representations are defined as usual: isomorphic under a K-linear isomorphism. Note that ρ defines an A-module structure on E. A representation ρ is irreducible if the only there are no non-trivial submodules. Similar definitions can be phrased for groups instead of algebras. #### **Facts** - (1) Every irreducible **R**-representation of the real algebra $\mathbf{R}(n)$ is isomorphic to \mathbf{R}^n - (2) Every irreducible **H**-representation of the real algebra $\mathbf{H}(n)$ is isomorphic to \mathbf{H}^n (as a right **H**-vector space). - (3) Every irreducible **C**-representation of the real algebra $\mathbf{C}(n)$ is isomorphic either to \mathbf{C}^n or to $\bar{\mathbf{C}}^n$. A pinor representation of $Pin_{r,s}$ is the restriction to $Pin_{r,s}$ of an irreducible representation of $C_{r,s}$. - \Diamond The type of the pinor representations depends only on ν . - ν even. Unique pinor respresentation $P_{s,t}$. - $\nu = 0, 2$: real of dimension d_0 (*Majorana*, *M*): \mathbf{R}^{d_0} . - $\nu = 4,6$: quaternionic of dimension d_2 (symplectic M, sM): \mathbf{H}^{d_2} . - ν odd. Two pinor representations. - $\nu=1,5$, so $\mathbf{i}^2=1$. There are two pinor representations $P_{r,s}^{\pm}$, distinguished by the action (+1 or -1) of \mathbf{i} . - $\nu = 1$: real of dimension d_1 (M): \mathbf{R}^{d_1} , $\mathbf{\bar{R}}^{d_1}$ - $\nu = 5$: quaternionic of dimension d_3 (sM): \mathbf{H}^{d_3} , $\bar{\mathbf{H}}^{d_3}$. - $\nu=3,7$, so $\mathbf{i}^2=-1$: complex $P_{r,s}$ and $\bar{P}_{r,s}$ of complex dimension d_1 , distinguished by the action $(+\mathbf{i} \text{ or } -\mathbf{i})$ of \mathbf{i} (Dirac, D): \mathbf{C}^{d_1} , $\bar{\mathbf{C}}^{d_1}$. $$\nu \begin{cases} \operatorname{even} \left\{ \begin{array}{l} 0, 2 \rightarrow \mathbf{R}^{d_0} \; (\textit{M}) \\ 4, 6 \rightarrow \mathbf{H}^{d_2} \; (\textit{sM}) \end{array} \right. \\ \operatorname{odd} \left\{ \begin{array}{l} 1, 5 \; (\mathbf{i}^2 = 1) \left\{ \begin{array}{l} 1 \rightarrow \mathbf{R}^{d_1}, \mathbf{\bar{R}}^{d_1} \; (\textit{M}) \\ 5 \rightarrow \mathbf{H}^{d_3}, \mathbf{\bar{H}}^{d_3} \; (\textit{sM}) \end{array} \right. \\ 3, 7 \; (\mathbf{i}^2 = -1) \rightarrow \mathbf{C}^{d_1}, \mathbf{\bar{C}}^{d_1} \; (\textit{D}) \end{cases} \end{cases}$$ *Remark*. Note that the k appearing in the d_k has the same parity as ν . Thus for ν even (odd), only d_0 and d_2 (d_1 and d_3) appear. A spinor representation of $Spin_{r,s}$ is the restriction to $Spin_{r,s}$ of an irreducible representation of $C_{r,s}^+$. - \Diamond The type of the spinor representations depends only on ν . - ν odd. There is a unique spinor representation $S_{r,s}$. - $\nu = 1,7$: real of dimension d_1 : \mathbf{R}^{d_1} (M). - $\nu = 3,5$: quaternionic of dimension d_3 : \mathbf{H}^{d_3} (sM). - ν even. Two representations (*Weyl spinors*, *W*). - $\nu=2,6$ ($\mathbf{i}^2=-1$): S and \bar{S} of complex dimension d_2 , distinguished by the action of \mathbf{i} (i and -i): \mathbf{C}^{d_2} , $\bar{\mathbf{C}}^{d_2}$. - $\nu=0,4$ ($\mathbf{i}^2=1$): S^\pm , distinguished by the action of \mathbf{i} (+1 and -1): - $\nu = 0$: real, dimension d_2 : \mathbf{R}^{d_2} , $\bar{\mathbf{R}}^{d_2}$ (MW). - $\nu = 4$: quaternionic, dimension d_4 : \mathbf{H}^{d_4} , $\bar{\mathbf{H}}^{d_4}$ (sMW). $$u \left\{ egin{aligned} \operatorname{odd} & ightarrow \left\{ egin{aligned} 1,7 ightarrow \mathbf{R}^{d_1} \; (\emph{\emph{M}}) \ 3,5 ightarrow \mathbf{H}^{d_3} \; (\emph{\emph{sM}}) \end{aligned} ight. \ \left\{ egin{aligned} 2,6 \; (\mathbf{i}^2=-1) ightarrow \mathbf{C}^{d_2}, ar{\mathbf{C}}^{d_2} \; (\emph{\emph{DW}}) \ 0,4 \; (\mathbf{i}^2=1) ightarrow \left\{ egin{aligned} 0 ightarrow \mathbf{R}^{d_2}, ar{\mathbf{R}}^{d_2} \; (\emph{\emph{MW}}) \ 4 ightarrow \mathbf{H}^{d_4}, ar{\mathbf{H}}^{d_4} \; (\emph{\emph{\emph{sMW}}}) \end{aligned} ight.$$ *Remark*. The forms corresponding to $\nu=5,6,7$ are the same as those for $\nu=3,2,1$. This means that the row of the 8 forms indexed by $\nu=0,\ldots,7$ is symmetric with respect to $\nu=4$. Note also that the k appearing in the d_k has the same parity as ν . Thus for ν odd (even), only d_1 and d_3 (d_2 and d_4) appear. For a given n $(1 \leqslant n \leqslant 7)$, there are n+1 signatures: (r,n-r), $0 \leqslant r \leqslant n$. The corresponding $\nu = 2r - n$ decrease from $\nu = n$ to $\nu = -n$ in steps of -2, but in case $n \geqslant 3$ it is only necessary to find the forms for the first four values of ν because the remaining n-3 cases repeat the beginning of the sequence, as $$\nu(r,s) = \nu(r+4,s-4) \mod 8.$$ In the tables that follow, we first specify the dimension n and the relevant d_k . Then the first row contains the n+1 signatures, the second the corresponding ν 's, while the third and forth specify the key data of the corresponding pinor and spinor representations. If the representation is unique (up to isomorphism), it is denoted F^d , with $F = \mathbf{R}, \mathbf{C}, \mathbf{H}$ and d the F-dimension of the representation. If there are to 'conjugate' representations of dimension d, they are denoted F^d and \bar{F}^d . The latter is like the former, but with the action of the i (multiplication by i for $F = \mathbf{C}$ and by 1 for $F = \mathbf{R}$ or $F = \mathbf{H}$) reversed in sign. $$n = 1$$. $d_1 = 1$. | (r,s) | (1,0) | (0,1) | |--------------|--------|---------------------| | ν | 1 | 7 | | P, \bar{P} | R, Ā | C, Ĉ | | F , F | 11, 11 | C , C | $$n=2$$. $d_0=2$, $d_2=1$. | S, \bar{S} | C, Ĉ | $\mathbf{R}, \mathbf{\bar{R}}$ | C, Ĉ | |--------------|----------------|--------------------------------|-------| | Р | \mathbf{R}^2 | \mathbf{R}^2 | Н | | ν | 2 | 0 | 6 | | (r,s) | (2,0) | (1,1) | (0,2) | In the lower left corner, $C_{2,0}^+ = C_2^+ = \mathbf{C}$ and the representations are the action of \mathbf{C} on itself by multiplication and conjugate multiplication. $$n = 3$$. $d_1 = 2$, $d_3 = 1$. | (r,s) | (3,0) | (2,1) | (1,2) | (0,3) | |--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------| | ν | 3 | 1 | 7 | 5 | | P, \bar{P} | $\mathbf{C}^2, \mathbf{\bar{C}}^2$ | $\mathbf{R}^2, \mathbf{\bar{R}}^2$ | $\mathbf{C}^2, \mathbf{\bar{C}}^2$ | $\mathbf{H}, \mathbf{ar{H}}$ | | | | | | | $$n = 4$$. $d_0 = 4$, $d_2 = 2$, $d_4 = 1$. | ν | (4,0) | (3,1) | (2,2) | (1,3) | (0,4) | |-------|-------|-------|----------------|------------------------------------|-------| | _ | 4 | | - 0
- 1 | | 4 | | | | | \mathbb{R}^4 | | | | | | | | $\mathbf{C}^2, \mathbf{\bar{C}}^2$ | | *Remark*. The space \mathbb{C}^2 for the signature (3,0) is the space of *Pauli pinors* and $\mathbb{C}^2 \oplus \bar{\mathbb{C}}^2$ for the signature (1,3), or (3,1), is the space of *Dirac spinors*. $$n = 5$$. $d_1 = 4$, $d_3 = 2$. | (r,s) | (5,0) | (4,1) | (3,2) | (2,3) | (1,4) | (0,5) | |--------------|------------------------------------|----------------|----------------|------------------------------------|------------------------------------|------------------------------------| | ν | 5 | 3 | 1 | 7 | 5 | 3 | | P, \bar{P} | $\mathbf{H}^2, \mathbf{\bar{H}}^2$ | l ' | l ' | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | $\mathbf{H}^2, \mathbf{\bar{H}}^2$ | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | | S | H ² | H ² | R ⁴ | R ⁴ | H ² | H^2 | n=6. $d_0=8, d_2=4, d_4=2.$ | (r,s) | (6,0) | (5,1) | (4,2) | (3,3) | (2,4) | (1,5) | (0,6) | |--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | ν | 6 | 4 | 2 | 0 | 6 | 4 | 2 | | Р | H ⁴ | H ⁴ | R ⁸ | R ⁸ | H ⁴ | H ⁴ | R ⁸ | | S, \bar{S} | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | $\mathbf{H}^2, \mathbf{\bar{H}}^2$ | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | $\mathbf{R}^4, \mathbf{\bar{R}}^4$ | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | $\mathbf{H}^2, \bar{\mathbf{H}}^2$ | $\mathbf{C}^4, \mathbf{\bar{C}}^4$ | n = 7. $d_1 = 8$, $d_3 = 4$. | ſ | (r,s) | (7,0) | (6,1) | (5,2) | (4,3) | (3,4) | (2,5) | (1,6) | (0,7) | |-----|--------------|---------------------------------|------------------|--------|--------------------------------|--------------------------------|--------------------------------------|--------------------------------|---| | | ν | 7 | 5 | 3 | 1 | 7 | 5 | 3 | 1 | | Ī | P, \bar{P} | C ⁸ . C ⁸ | H^4, \bar{H}^4 | C8. C8 | R ⁸ R̄ ⁸ | C ⁸ C̄ ⁸ | $\mathbf{H}^4 \; \bar{\mathbf{H}}^4$ | C ⁸ C̄ ⁸ | R ⁸ R ̄ ⁸ | | - 1 | | R ⁸ | | , , , | •• ,•• | • , • | , | • , • | •• ,•• | ## Bibliography I - I. R. Porteous, Clifford algebras and the classical groups. Cambridge studies in advanced mathematics 50, Cambridge University Press, 1995. - [2] J. M. Figueroa-O'Farrill, "Majorana spinors." http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf, 2006. Lecture notes, University of Edinburgh. - [3] D. J. H. Garling, *Clifford algebras: an introduction*.No. 78 in LMS Student Texts, Cambridge University Press, 2011.