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Introduction Goodman’s book

Download from the author’s page: F. M. Goodman
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Introduction Goodman’s book

“For further study of group theory, my own preference is for the
theory of representations and applications. I recommend

W. Fulton and J. Harris, Representation Theory, A First Course,
Springer-Verlag, 1991.

B. Simon, Representations of Finite and Compact Groups,
American Mathematical Society, 1996.

S. Sternberg, Group Theory and Physics, Cambridge University
Press, 1994.

These books are quite challenging, but they are accessible with a
knowledge of this course, linear algebra, and undergraduate analysis.”
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Introduction Artin’s book
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Introduction Artin’s book
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Introduction Artin’s book

“In writing this book, I tried to follow these principles:

1. The basic examples should precede the abstract definitions.

2. Technical points should be presented only if they are used
elsewhere in the book.

3. All topics should be important for the average mathematician.

Although these principles may sound like motherhood and the flag, I
found it useful to have them statete explicitly. They are, of course,
violated here and there.”

One may ask:

What about topics not covered that may be important [for the
average mathematician] and very relevant for an Abstract Algebra
Course?
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Classification of the Gr ,s
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Classification of the Gr,s Notations

Remark

In all cases, we set Xn = Xn,0, X̄n = Xn̄ = X0,n (Xn(C) in the complex
case), where Xr ,s stands for any of the symbols defined in prevoious
lectures.

O, SO, SO
+

, G, G× , Γ = V , Γ
+

= V
+

, Pin, Spin, Spin
+

.

Note Xn and Xn̄ point to difference structures, as for example Gn and
Gn̄. The exceptions are O and SO, for it is plain that On = On̄ and
SOn = SOn̄.
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Classification of the Gr,s Even algebra isomorphisms

♦♦♦ For any signature (r , s), Cr ,s ' C
+

r ,s+1 ' C
+

s+1,r .

� Take a standard basis of Cr ,s+1 of the form γj (j = 1, . . . , r), γ̄k
(k = 1, . . . , s + 1) and write γ̄ = γ̄s+1. Now consider the elements
Γj = γ̄γj (j = 1, . . . , r) and Γ̄k = γ̄γ̄k (k = 1, . . . , s). These elements
belong to C

+

r ,s+1, are linearly independent, anticommute and satisfy
the standard relations for the signature (r , s): Γ2

j = 1 (j = 1, . . . , r)

and Γ̄2
k = −1 (k = 1, . . . , s). This implies that Cr ,s ' C

+

r ,s+1.

For the other isomorphism, take a standard basis of Cs+1,r of the
form γk (k = 1, . . . , s + 1), γ̄j (j = 1, . . . , r) and write γ = γr+1.
Now consider the elements Γj = γγ̄j (j = 1, . . . , r) and Γ̄k = γγk
(k = 1, . . . , s). These elements belong to C

+

s+1,r , are linearly
independent, anticommute and satisfy the standard relations for the
signature (r , s): Γ2

j = 1 (j = 1, . . . , r) and Γ̄2
k = −1 (k = 1, . . . , s).

This implies the isomorphism Cr ,s ' C
+

s+1,r .
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Classification of the Gr,s Even algebra isomorphisms

♦♦♦ If s > 0, then C
+

r ,s ' Cr ,s−1.

♦♦♦ If r > 0, then C
+

r ,s ' Cs,r−1.

♦♦♦ If n > 0, then C
+

n ' C̄n−1 and C̄n ' Cn−1.
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Classification of the Gr,s The basic ingredients

Notations. K will denote one of the fields R (real field), C (complex
field) and H (quaternion field). For any integer n ≥ 2, K(n) will
denote the ring of n × n matrices with coefficients in K. Since
K(n) = K⊗ R(n), its real dimension is dKn

2, where
dK = dimR K = 1, 2, 4, respectively. Note: K(m)⊗ R(n) ' K(mn).

♦♦♦1 C⊗ C ' C⊕ C

♦♦♦2 C⊗H ' C(2)

♦♦♦3 H⊗H ' R(4)

�1 Since (i ⊗ i)2 = 1⊗ 1, the elements e± = 1
2
(1⊗ 1± i ⊗ i) are

idempotents with e+ + e− = 1⊗ 1 and e+e− = e−e+ = 0⊗ 0. Then
the map C⊕ C→ C⊗ C, (x , y) 7→ xe+ + ye−, satisfies
(xe+ + ye−)(x ′e+ + y ′e−) = xx ′e+ + yy ′e− and with this it is easy to
prove that it is an isomorphism.
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Classification of the Gr,s The basic ingredients

�2 If z is a complex number and q a quaternion, let fz,q : H→ H be
defined by fz,q(h) = zhq̄. Then fz,q is C-linear, so that we have a
map C×H→ EndC(H), (x , q) 7→ fz,q. The map is clearly bilinear
and hence induces a linear map C⊗H→ EndC(H). This map is an
algebra homomorphism, for

z2z1hq̄1q̄2 = (z1z2)h q2q1. (1)

It can be checked that this map sends the basis {1, i} ⊗ {1, I , J ,K}
into linearly independent endomorphisms, and hence the map is an
isomorphism, for both sides have dimension 8. Finally note that
EndC(H) ' EndC(C2) ' C(2).

�3 If q1, q2 ∈ H, define fq1,q2 : H→ H by fq1,q2(h) = q1hq̄2. In this
way we get, as in 2), an algebra homomorphism H⊗H→ End(H)
which can be shown to be an isomorphism (both sides have
dimension 16). Finally End(H) ' End(R4) ' R(4).
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Classification of the Gr,s A corner of the Clifford chessboard

We are aiming at giving isomorphic descriptions of Cr ,s and C
+

r ,s in
terms of basic algebra forms. It will turn out that it is enough to
achieve this for 0 ≤ r , s ≤ 7. So we will first look at how to fill in the
slots in this 8× 8 chessboard .

The main tools will be the explicit description of Cr ,s for slots close
to the corner (0, 0), which contains C0,0 = R, and three inductive
formulas.

Let us begin with the slots near (0, 0):

r\s 0 1 2
0 R C H
1 R⊕ R R(2)
2 R(2)
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Classification of the Gr,s A corner of the Clifford chessboard

For row 0, C0,s = C̄s , and we have:

C̄1 ' C. In fact in this case the pseudoscalar i is a vector, C̄1 = 〈1, i〉
and i 2 = −1.

C̄2 ' H. If e1, e2 is an orthonormal basis, C̄2 = 〈1, e1, e2, e1e2〉 and
the linear isomorphism 1, e1, e2, e1e2 7→ 1, I , J ,K is an algebra
isomorphism.

C1,0 = C1 ' R⊕ R. If e is a unit vector, C1 = 〈1, e〉 with e2 = 1.
The elements e+ = (1 + e)/2 and e− = (1− e)/2 satisfy e2

+ = e+,
e2
− = e− and e+e− = 0. It follows that the map R⊕ R→ C1,

(α, β) 7→ αe+ + βe− is an isomorphism.
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Classification of the Gr,s A corner of the Clifford chessboard

C1,1 ' R(2). Let e1, e2 be an orthonormal basis. Then
C1,1 = 〈1, e1, e2, e1ε2〉. Consider the linear map C1,1 → R(2) given by
1, e1, e2, e1e2 7→ I2,E1,E2,E3, where

E1 =

(
1
−1

)
,E2 =

(
−1

1

)
,E3 =

(
−1

−1

)
.

This map is a linear isomorphism, because I2,E1,E2,E3 are linearly
independent, and since E 2

1 = I2, E 2
2 = −I2 and E3 = E1E2, it is also

an algebra isomorphism.

C2,0 = C2 ' R(2). Like C1,1, but using

E1 =

(
1
−1

)
,E2 =

(
−1

1

)
,E3 =

(
1

−1

)
.
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Classification of the Gr,s Inductive formulas

♦♦♦1 Cr+2 ' C̄r ⊗ C2 ' C̄r ⊗ R(2).

♦♦♦2 C̄r+2 ' Cr ⊗ C̄2 ' Cr ⊗H

♦♦♦3 Cr+1,s+1 ' Cr ,s ⊗ R(2).

�1 Let γ̄1, . . . , γ̄r be standard generators of C̄r , so γ̄2
k = −1, and

γ1, γ2 standard generators of C2, so γ2
1 = γ2

2 = 1. Let i2 = γ1γ2, so
that i 2

2 = −1.

Consider the elements Γk ∈ C̄r ⊗ C2 defined by Γk = γ̄k ⊗ i2

(k = 1, . . . , r), and Γr+` = 1⊗ γ` (` = 1, 2).

The Γj (j = 1, . . . , r + 2) are linearly independent and satisfy the
relations of a standard basis of Cr+2.

So we have an injective homomorphism Cr+2 → C̄r ⊗ C2, which must
be an isomorphism because both algebras have dimension 2r+2.
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Classification of the Gr,s Inductive formulas

�2 Let γ1, . . . , γr be standard generators of Cr , so γ2
k = 1, and γ̄1, γ̄2

standard generators of C̄2, so γ̄2
1 = γ̄2

2 = −1. Let i2 = γ̄1γ̄2, so that
i 2
2 = −1.

Consider the elements Γ̄k ∈ Cr ⊗ C̄2 defined by Γ̄k = γk ⊗ i2

(k = 1, . . . , r), and Γ̄r+` = 1⊗ γ̄` (` = 1, 2).

The Γ̄j (j = 1, . . . , r + 2) are linearly independent and satisfy the
relations of a standard basis of C̄r+2.

So we have an injective homomorphism, C̄r+2 → Cr ⊗ C̄2, which
must be an isomorphism because both algebras have dimension 2r+2.
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Classification of the Gr,s Inductive formulas

�3 Let γ1, . . . , γr , γ̄1, . . . , γ̄s be standard generators of Cr ,s : γ
2
j = 1

(j = 1, . . . , r) and γ̄2
k = −1 (k = 1, . . . , s). Let γ, γ̄ be standard

generators of C1,1 (γ2 = 1, γ̄2 = −1) and let i2 = γγ̄, so that i 2
2 = 1.

Consider the elements Γj and Γ̄k of Cr ,s ⊗ C1,1, j = 1, . . . , r + 1,
k = 1, . . . , s + 1, defined as Γj = γj ⊗ i2 (j = 1, . . . , r), Γr+1 = 1⊗ γ,
Γ̄k = γ̄k ⊗ i2 (k = 1, . . . , r) and Γ̄s+1 = 1⊗ γ̄.

The Γ1, . . . , Γr+1, Γ̄1, . . . , Γ̄s+1 are linearly independent and satisfy the
relations of a standard basis of Cr+1,s+1.

Now argue as in the previous cases.
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Classification of the Gr,s The full chessboard

Remark . The Cr and C̄r , r = 0, . . . , 7, fill the chessboard 0-th
column and 0-th row, respectively, and ♦♦♦1 and ♦♦♦2, page 18, say that
if for either one we know the values up to r , then we can know the
values of the other up to r + 2. Since we know the values up to
r = 2 for both of them, the determination of the other values can be
carried out, for example, as follows:

C3 ' C̄1 ⊗ R(2) ' C⊗ R(2) ' C(2); C4 ' C̄2 ⊗ R(2) ' H(2);

C̄3 ' C1 ⊗H ' H⊕H; C̄4 ' C2 ⊗H ' H(2);

C̄ 5 ' C3 ⊗H ' C(2)⊗H ' C(4) (use the ♦♦♦s on page 13);

C̄6 ' C4 ⊗H ' H(2)⊗H ' R(8) (again by the ♦♦♦s on page 13);

C5 ' C̄3 ⊗ R(2) ' H(2)⊕H(2); C6 ' C̄4 ⊗ R(2) ' H(4);

C7 ' C̄5 ⊗ R(2) ' C(8); C̄7 ' C5 ⊗H ' R(8)⊕ R(8).

Now use the recursive formulas on page 18 to fill in the rest:
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Classification of the Gr,s The full chessboard

r\s 0 1 2 3
0 R C H H⊕H
1 R⊕ R R(2) C(2) H(2)
2 R(2) R(2)⊕ R(2) R(4) C(4)
3 C(2) R(4) R(4)⊕ R(4) R(8)
4 H(2) C(4) R(8) R(8)⊕ R(8)
5 H(2)⊕H(2) H(4) C(8) R(16)
6 H(4) H(4)⊕H(4) H(8) C(16)
7 C(8) H(8) H(8)⊕H(8) H(16)

r\s 4 5 6 7
0 H(2) C(4) R(8) R(8)⊕ R(8)
1 H(2)⊕H(2) H(4) C(8) R(16)
2 H(4) H(4)⊕H(4) H(8) C(16)
3 C(8) H(8) H(8)⊕H(8) H(16)
4 R(16) C(16) H(16) H(16)⊕H(16)
5 R(16)⊕ R(16) R(32) C(32) H(32)
6 R(32) R(32)⊕ R(32) R(64) C(64)
7 C(32) R(64) R(64)⊕ R(64) R(128)
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Classification of the Gr,s Periodicity mod 8

♦♦♦1 Cn+8 ' Cn ⊗ R(16).

♦♦♦2 C̄n+8 ' C̄n ⊗ R(16).

♦♦♦3 Cr+4,s+4 ' Cr ,s ⊗ R(16).

� ♦♦♦1 and ♦♦♦2 on page 18 allow us to write:

Cn+8 ' C̄n+6 ⊗ C2 ' Cn+4 ⊗ C̄2 ⊗ C2

' C̄n+2 ⊗ C2 ⊗ C̄2 ⊗ C2

' Cn ⊗ C̄2 ⊗ C2 ⊗ C̄2 ⊗ C2

Now we have, using the chessboard and ♦♦♦3 on page 13,

C̄2 ⊗ C2 ⊗ C̄2 ⊗ C2 ' H⊗ R(2)⊗H⊗ R(2)

' H⊗H⊗ R(4)

' R(4)⊗ R(4) ' R(16).

With this we conclude the proof of ♦♦♦1.
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Classification of the Gr,s Periodicity mod 8

The proof of ♦♦♦2 follows the same pattern as the proof for ♦♦♦1:

C̄n+8 ' Cn+6 ⊗ C̄2 ' C̄n+4 ⊗ C2 ⊗ C̄2

' Cn+2 ⊗ C̄2 ⊗ C2 ⊗ C̄2

' C̄n ⊗ C2 ⊗ C̄2 ⊗ C2 ⊗ C̄2

and clearly C2 ⊗ C̄2 ⊗ C2 ⊗ C̄2 ' R(16).

The proof of ♦♦♦3 is simpler: it suffices to apply the rule ♦♦♦3 on page
18 four successive times to conlude that

Cr+4,s+4 ' Cr ,s ⊗ R(2)⊗4 ' Cr ,s ⊗ R(16).
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Classification of the Gr,s Periodicity mod 8

1

2

3
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1 2 30 4 5 6 7 8 9 10 12 1311 14 15
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Classification of the Gr,s Periodicity mod 8

Reduction to the chessboard. Given r , s, let m = min(r , s) and k
the greatest non-negative integer such that 4k ≤ m. Let r ′ = r − 4k ,
s ′ = s − 4k and m′ = m − 4k = min(r ′, s ′). Then ♦♦♦3 on page 23
tells us that Cr ,s ' Cr ′,s′ ⊗ R(16k) and by ♦♦♦3 on page 18, that
Cr ′,s′ ' Cr ′′,s′′ ⊗ R(2m′), with r ′′ = r ′ −m′, s ′′ = s ′ −m′, or
Cr ,s ' Cr ′′,s′′ ⊗ R(2m′16k). Since either s ′′ = 0 (when s 6 r) or
r ′′ = 0 (when r 6 s), we see that Cr ,s ' Cr ′′ (when s 6 r) or
Cr ,s ' C̄s′′ (when r 6 s).

The integer ν = r − s mod 8 is clearly invariant in the reduction
process. It follows that Cr ,s ' Cν ⊗ R(d) if r > s and
Cr ,s ' C̄8−ν ⊗ R(d ′) if r < s, where d and d ′ are positive integers.
Now in the 15 algebras Cν (ν = 0, . . . , 7) and C̄8−ν (ν = 1, . . . , 7)
there appear exactly 5 forms (up to tensoring by R(2m), for some m):

ν 0, 2 1 3, 7 4, 6 5
Form R R⊕ R C H H⊕H

(RSME-UIMP) Enriching Abstract Algebra with GA 22-26 August, 2016 26 / 44



Classification of the Gr,s Periodicity mod 8

Algorithm

While r , s > 4, jump to r − 4, s − 4 and update the matrix factor by
R(16). So we may assume min(r , s) 6 3.

While r , s > 1, jump to r − 1, s − 1 and update the matrix factor by
R(2). After at most three steps, we are going to hit the Cn boundary
or the C̄n.

While n > 8, jump to the slot n − 8 along the boundary and update
the matrix factor by R(16). So we may assume that we have landed
on Cn or C̄n with 0 6 n 6 7.

Output: Let ν = r − s mod 8 and define dk = 2(n−k)/2, for
k = 0, . . . , 4 (in each usage below, dk is an integer). Then return the
algebra F (d) indicated by the following table:
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Classification of the Gr,s Periodicity mod 8

ν 0, 2 1 3, 7 4, 6 5
F R R⊕ R C H H⊕H
d d0 d1 d1 d2 d3

Now the isomorphisms C
+

r ,s ' Cr ,s−1 if s > 0 and C
+

n ' C̄n−1 imply

that the form F
+

ν of C
+

r ,s is Fν+1 (in all cases), and so:

ν 1, 7 0 2, 6 3, 5 4
F+ R R⊕ R C H H⊕H
d+ d1 d2 d2 d3 d4
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Classification of the Gr,s Periodicity mod 8

That the d ’s are as claimed follows by counting dimensions. The
dimension of Cr ,s is 2n, and the dimensions of the five forms are

Form R(m) R(m)⊕ R(m) C(m) H(m) H(m)⊕H(m)
d(m) m2 2m2 2m2 4m2 8m2

Solving for m in the equation 2n = d(m) we get the claimed
expressions. For example, if 2n = 8m2, then m2 = 2n−3 and hence
m = 2(n−3)/2 = d3.
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Classification of the Gr,s The complex case

n mod 2 Cn C
+

n

0 C(d0) C(d2)⊕ C(d2)
1 C(d1)⊕ C(d1) C(d3)
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Pin and Spin representations
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Pin and Spin representations Behaviour of the pseudoscalar

Let n = r + s and ν = r − s mod 8.

We defined dk = 2(n−k)/2 (it will be used for k = 0, 1, . . . , 4 and in
cases that will guarantee that (n − k)/2 is an integer).

Let i = ir ,s be the pseudoscalar (volume element) of Cr ,s .

♦♦♦1 i2 = (−1)s+n//2 = (−1)(r−s)//2 = (−1)ν//2. Thus

i2 = 1 if ν ≡ 0, 1 mod 4

i2 = −1 if ν ≡ 2, 3 mod 4

♦♦♦2 For any vector e, ei = (−1)n−1ie. Therefore, i is central if n is
odd and anticommutes with vectors if n is even (so it anticommutes
with odd multivectors and commutes with even multivectors). Since
n ≡ ν mod 2, we can use ν instead of n.
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Pin and Spin representations Basic notions

Let K be one of the fields R, C, H.

A K-representation of a real algebra A is an R-linear homomorphism
ρ : A→ EndK(E ) for some K-vector space E .

Equivalent K-representations are defined as usual: isomorphic under
a K-linear isomorphism. Note that ρ defines an A-module structure
on E .

A representation ρ is irreducible if the only there are no non-trivial
submodules.

Similar definitions can be phrased for groups instead of algebras.
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Pin and Spin representations Irreducible representations of K(n)

Facts

(1) Every irreducible R-representation of the real algebra R(n) is
isomorphic to Rn

(2) Every irreducible H-representation of the real algebra H(n) is
isomorphic to Hn (as a right H-vector space).

(3) Every irreducible C-representation of the real algebra C(n) is
isomorphic either to Cn or to C̄n.
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Pin and Spin representations Pinor representations

A pinor representation of Pinr ,s is the restriction to Pinr ,s of an
irreducible representation of Cr ,s .

♦♦♦ The type of the pinor representations depends only on ν.

ν even. Unique pinor respresentation Ps,t .

ν = 0, 2: real of dimension d0 (Majorana, M): Rd0 .

ν = 4, 6: quaternionic of dimension d2 (symplectic M , sM): Hd2 .

ν odd. Two pinor representations.

ν = 1, 5, so i2 = 1. There are two pinor representations P±r ,s ,
distinguished by the action (+1 or −1) of i.

ν = 1: real of dimension d1 (M): Rd1 , R̄d1

ν = 5: quaternionic of dimension d3 (sM): Hd3 , H̄d3 .

ν = 3, 7, so i2 = −1: complex Pr ,s and P̄r ,s of complex dimension d1,
distinguished by the action (+i or −i) of i (Dirac , D): Cd1 , C̄d1 .
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Pin and Spin representations Pinor synopsis

ν



even

{
0, 2→ Rd0 (M)

4, 6→ Hd2 (sM)

odd

1, 5 (i2 = 1)

{
1→ Rd1 , R̄d1 (M)

5→ Hd3 , H̄d3 (sM)

3, 7 (i2 = −1)→ Cd1 , C̄d1 (D)

Remark . Note that the k appearing in the dk has the same parity as
ν. Thus for ν even (odd), only d0 and d2 (d1 and d3) appear.
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Pin and Spin representations Spinor representations

A spinor representation of Spinr ,s is the restriction to Spinr ,s of an

irreducible representation of C
+

r ,s .

♦♦♦ The type of the spinor representations depends only on ν.

ν odd. There is a unique spinor representation Sr ,s .

ν = 1, 7: real of dimension d1: Rd1 (M).

ν = 3, 5: quaternionic of dimension d3: Hd3 (sM).

ν even. Two representations (Weyl spinors, W ).

ν = 2, 6 (i2 = −1): S and S̄ of complex dimension d2, distinguished
by the action of i (i and −i): Cd2 , C̄d2 .

ν = 0, 4 (i2 = 1): S±, distinguished by the action of i (+1 and −1):

ν = 0: real, dimension d2: Rd2 , R̄d2 (MW ).

ν = 4: quaternionic, dimension d4: Hd4 , H̄d4 (sMW ).
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Pin and Spin representations Spinor synopsis

ν



odd→

{
1, 7→ Rd1 (M)

3, 5→ Hd3 (sM)

even


2, 6 (i2 = −1)→ Cd2 , C̄d2 (DW )

0, 4 (i2 = 1)→

{
0→ Rd2 , R̄d2 (MW )

4→ Hd4 , H̄d4 (sMW )

Remark . The forms corresponding to ν = 5, 6, 7 are the same as
those for ν = 3, 2, 1. This means that the row of the 8 forms indexed
by ν = 0, . . . , 7 is symmetric with respect to ν = 4.

Note also that the k appearing in the dk has the same parity as ν.
Thus for ν odd (even), only d1 and d3 (d2 and d4) appear.
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Pin and Spin representations Tables for 1 6 n 6 7

For a given n (1 6 n 6 7), there are n + 1 signatures: (r , n − r),
0 6 r 6 n. The corresponding ν = 2r − n decrease from ν = n to
ν = −n in steps of −2, but in case n > 3 it is only necessary to find
the forms for the first four values of ν because the remaining n − 3
cases repeat the beginning of the sequence, as

ν(r , s) = ν(r + 4, s − 4) mod 8.

In the tables that follow, we first specify the dimension n and the
relevant dk . Then the first row contains the n + 1 signatures, the
second the corresponding ν’s, while the third and forth specify the
key data of the corresponding pinor and spinor representations. If the
representation is unique (up to isomorphism), it is denoted F d , with
F = R,C,H and d the F -dimension of the representation. If there
are to ‘conjugate’ representations of dimension d , they are denoted
F d and F̄ d . The latter is like the former, but with the action of the i
(multiplication by i for F = C and by 1 for F = R or F = H)
reversed in sign.
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Pin and Spin representations n = 1 and n = 2

n = 1. d1 = 1.

(r , s) (1,0) (0,1)

ν 1 7

P , P̄ R, R̄ C, C̄

S R R

n = 2. d0 = 2, d2 = 1.

(r , s) (2,0) (1,1) (0,2)

ν 2 0 6

P R2 R2 H

S , S̄ C, C̄ R, R̄ C, C̄

In the lower left corner, C
+

2,0 = C
+

2 = C and the representations are
the action of C on itself by multiplication and conjugate
multiplication.
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Pin and Spin representations n = 3 and n = 4

n = 3. d1 = 2, d3 = 1.

(r , s) (3,0) (2,1) (1,2) (0,3)

ν 3 1 7 5

P , P̄ C2, C̄2 R2, R̄2 C2, C̄2 H, H̄

S H R2 R2 H

n = 4. d0 = 4, d2 = 2, d4 = 1.

(r , s) (4,0) (3,1) (2,2) (1,3) (0,4)

ν 4 2 0 6 4

P H2 R4 R4 H2 H2

S , S̄ H, H̄ C2, C̄2 R2, R̄2 C2, C̄2 H, H̄

Remark . The space C2 for the signature (3, 0) is the space of Pauli
pinors and C2 ⊕ C̄2 for the signature (1, 3), or (3, 1), is the space of
Dirac spinors.
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Pin and Spin representations n = 5 and n = 6

n = 5. d1 = 4, d3 = 2.

(r , s) (5,0) (4,1) (3,2) (2,3) (1,4) (0,5)

ν 5 3 1 7 5 3

P , P̄ H2, H̄2 C4, C̄4 R4, R̄4 C4, C̄4 H2, H̄2 C4, C̄4

S H2 H2 R4 R4 H2 H2

n = 6. d0 = 8, d2 = 4, d4 = 2.

(r , s) (6,0) (5,1) (4,2) (3,3) (2,4) (1,5) (0,6)

ν 6 4 2 0 6 4 2

P H4 H4 R8 R8 H4 H4 R8

S , S̄ C4, C̄4 H2, H̄2 C4, C̄4 R4, R̄4 C4, C̄4 H2, H̄2 C4, C̄4
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Pin and Spin representations n = 7

n = 7. d1 = 8, d3 = 4.

(r , s) (7,0) (6,1) (5,2) (4,3) (3,4) (2,5) (1,6) (0,7)

ν 7 5 3 1 7 5 3 1

P, P̄ C8, C̄8 H4, H̄4 C8, C̄8 R8, R̄8 C8, C̄8 H4, H̄4 C8, C̄8 R8, R̄8

S R8 H4 H4 R8 R8 H4 H4 R8
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