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Abstract

We present a geometric framework for constructing additive and non-additive stabiliser
codes which encompasses stabiliser codes and graphical non-additive stabiliser codes.

1 Introduction

Error-correction is an essential component in the construction of a fault-tolerant quantum circuit
[1]. The most prevalent class of quantum codes are stabiliser codes, introduced in [9] and [6].
An [[n, k, d]] stabiliser code encodes k logical qubits on n physical qubits in such a way that there
is a recovery map which is able to correct all errors of weight at most b(d− 1)/2c. Here, an error
of weight w is a Pauli operator acting on (C2)⊗n which has precisely n− w components which
are the identity map. An [[n, k, d]] stabiliser code Q(S) is described by an abelian subgroup S
of the Pauli group of size 2n−k. The code Q(S) has dimension 2k and is the intersection of the
eigenspaces of eigenvalue 1 of the linear operators of S. More generally, a ((n,K, d)) is a code of
dimension K which encodes on n physical qubits and for which there is a recovery map which
is able to correct all errors of weight at most b(d− 1)/2c. Therefore, a [[n, k, d]] stabiliser code is
a ((n, 2k, d)) code.

It is well-established that there are parameters for which one can find direct sums of stabiliser
codes which are larger than the optimal stabiliser code with the same n and d. These codes are
called non-additive stabiliser codes, as opposed to stabiliser codes which are often referred to
as additive stabiliser codes, since they are equivalent to certain classical additive binary codes.
For example, as a stabiliser code the optimal [[5, k, 2]] code is attained by the 4-dimensional
[[5, 2, 2]] code. However, as discovered in [16], there is a ((5, 6, 2)) which is the direct sum
of six [[5, 0, 3]] stabiliser codes. A simple description of this code was given using graphs in
[17], which also contained a construction of a ((9, 12, 3)) non-additive stabiliser code. A subset
of the same authors then provided an example of a ((10, 24, 3)) code in [18]. Apart from the
graphical non-additive stabiliser codes, there are also examples of direct sums of stabiliser codes

∗23 July 2021.

1



2

constructed by Grassl and Rötteler from Goethals and Preparata codes, see [10] and [11]. The
latter article also gives a description of graphical non-additive stabiliser codes.

The aim of this article is to give a general geometrical framework for all these constructions. We
start by giving an algebraic description of non-additive stabiliser codes, which are the direct sum
of stabiliser codes. We then translate this construction to projective geometry and prove that
such a code is given by a set of lines X with a specific property, called a quantum set of lines,
and a set of points with the property that any pair of the points projects X onto a set of lines.

The finite field with q elements will be denoted Fq. We will use the notation [n, k]q code to
describe a linear k-dimensional code over of length n over Fq, i.e. a k-dimensional subspace of
the vector space Fn

q .

2 Direct sum of stabiliser codes

The following theorem is from Nielsen and Chuang [14, Theorem 10.1] and is due to Bennett,
DiVincenzo, Smolin and Wootters [4] and Knill and Laflamme [13].

Theorem 1. Let Q be a quantum code, let P be the projector onto Q and let E be a quantum
operation. A necessary and sufficient condition for the existence of an error-correction operation
R correcting E on Q is that, for all Ei, Ej ∈ E ,

PE†iEjP = αijP,

for some Hermitian matrix α of complex numbers.

Recall that the Pauli matrices are

1 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
.

Let
Pn = {cσ1 ⊗ · · · ⊗ σn | σi ∈ {1, X, Y, Z}, c4 = 1}

denote the group of Pauli operators on (C2)⊗n.

The weight wt(E) of E ∈ Pn is the number of non-identity operators in its tensor product.

We will be interested in constructing codes which can correct all errors in

Ed = {Ei ∈ Pn | wt(Ei) 6 b(d− 1)/2c}.

By discretisation of errors, [14, Theorem 10.2], this allows such a code to correct any linear
combination of the errors in Ed.
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Let S be an abelian subgroup of Pn of size 2n−k. The additive stabiliser code Q(S) is defined to
be the intersection of the eigenspaces of eigenvalue 1 of the elements of S. We will implicitly
assume throughout that S does not contain −1 (so that Q(S) is non-trivial).

Theorem 2. Suppose k 6= 0. If d is the minimum weight of Centraliser(S) \ S and we encode
with Q(S) then there is a recovery map which corrects all errors in Ed.

Proof. Suppose Ei, Ej ∈ E . Then E = EiEj has weight at most d− 1. This implies that

E 6∈ Centraliser(S) \ S

since the elements of Centraliser(S) \ S have weight at least d.

Thus, either E 6∈ Centraliser(S) or E ∈ S.

The projector onto Q(S) is

P =
2k∑
i=1

|ψi〉〈ψi| ,

where {|ψi〉 | i = 1, . . . , 2k} is an orthonormal basis for Q(S).

If E 6∈ Centraliser(S) then there is an element M ∈ S such that ME = −EM and

PEiEjP = PEP =
2k∑

r,s=1

|ψr〉〈ψr|E |ψs〉〈ψs|

=
2k∑

r,s=1

|ψr〉〈ψr|EM |ψs〉〈ψs| = −
2k∑

r,s=1

|ψr〉〈ψr|ME |ψs〉〈ψs| = −PEP

from which it follows that PEP = 0.

If E ∈ S then

PEiEjP = PEP =
2k∑

r,s=1

|ψr〉〈ψr|E |ψs〉〈ψs| =
2k∑

r,s=1

|ψr〉〈ψr||ψs〉〈ψs| = P.

Hence, Theorem 1 implies there is a recovery map.

In light of Theorem 2, if k 6= 0 then one defines the minimum distance d of Q(S) to be the
minimum weight of the elements of Centraliser(S) \ S. If k = 0 then we define the minimum
distance d of Q(S) to be the minimum weight of the elements of S. If d is the minimum weight
of the elements of Centraliser(S) then the code is said to be pure and impure if not.

Suppose that {M1, . . . ,Mn−k} is a set of generators for S. We construct a binary (n−k)×2nma-
trix, whose j-th row is obtained from the generatorMj in the following way. If the i-th component
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of Mj is 1, X, Z, Y then the (i, i+ n) coordinates of the j-th row are (0, 0), (1, 0), (0, 1), (1, 1)
respectively. We denote this map by τ , so the j-th row of G is τ(Mj). Let C be the corresponding
binary linear code with parameters [2n, n− k] which has a generator matrix G. The fact that S
is abelian is equivalent to the property that for any two elements u, v ∈ C,

(u, v) =
n∑

i=1

(uivi+n − viui+n) = 0. (1)

This can be checked directly by observing that the only pairs of Pauli’s that do not commute are
{X, Y }, {X,Z} and {Y, Z} and that the only pairs {(ui, ui+n), (vi, vi+n)} that contribute a “1”
to the sum are {(1, 0), (1, 1)}, {(1, 0), (0, 1)} and {(1, 1), (0, 1)}.
If we define

C⊥s = {v ∈ F2n
2 | (u, v) = 0, for all u ∈ C}

then the condition on C, so that S is abelian, is that C 6 C⊥s .

Let T ⊆ Fn−k
2 and define, for t = (t1, . . . , tn−k) ∈ T ,

Qt(S)

as the intersection of the eigenspaces of eigenvalue 1 of (−1)tiMi, for all i ∈ {1, . . . , n − k},
and

Q(S, T ) =
⊕
t∈T

Qt(S).

Let t, u ∈ T \ {0} and let At,u be a (n − k) × (n − k) non-singular matrix whose first two
columns are t and u. Then A−1t,uG is also a generator matrix for C and we can find another set

{M ′
i |i = 1, . . . , n− k}

of generators of S, where M ′
i is obtained from the i-th row of A−1t,uG by applying τ−1, in other

words reversing the construction above.

We define St,u as the subgroup of S generated by M ′
3, . . . ,M

′
n−k.

Lemma 3. Suppose |ψt〉 ∈ Qt(S) and |ψu〉 ∈ Qu(S). Then, for all M ∈ St,u,

M
∣∣ψt
〉

=
∣∣ψt
〉

and M |ψu〉 = |ψu〉 .

Proof. Observe that Qt(S) depends on the set of generators we have chosen for S. If we use the
set of generators M ′

1, . . . ,M
′
n−k for S then Qt(S) becomes Q(1,0,0,...,0)(S) and Qu(S) becomes

Q(0,1,0,...,0)(S). Thus, M ′
j |ψt〉 = |ψt〉 and M ′

j |ψu〉 = |ψu〉 for all j ∈ {3, . . . , n− k}.

.



5

Theorem 4. Let T ⊂ Fn−k
2 . If d is the minimum weight of Centraliser(St,u), where the minimum

is taken over all pairs (t, u) of non-zero elements of T , and we encode with Q(S, T ) then there
is a recovery map which corrects all errors in Ed.

Proof. The projector onto Q(S, T ) is

P =
∑
t∈T

2k∑
i=1

∣∣ψt
i

〉〈
ψt
i

∣∣
where {|ψt

i〉 | i = 1, . . . , 2k} is an orthonormal basis for Qt(S).

Suppose Ei, Ej ∈ E . Then E = EiEj has weight at most d− 1. This implies that

E 6∈ Centraliser(St,u)

for any t, u ∈ T , since the elements of Centraliser(St,u) have weight at least d.

Thus, since the elements in Pn either commute or anti-commute, there is an element Mt,u ∈ St,u

such that Mt,uE = −EMt,u.

By Lemma 3,
Mt,u

∣∣ψt
r

〉
=
∣∣ψt

r

〉
and Mt,u |ψu

s 〉 = |ψu
s 〉 ,

for all r, s ∈ {1, . . . , 2k}.
Hence,

PEP =
∑
t,u∈T

2k∑
r,s=1

∣∣ψt
r

〉〈
ψt
r

∣∣E |ψu
s 〉〈ψu

s |

=
∑
t,u∈T

2k∑
r,s=1

∣∣ψt
r

〉〈
ψt
r

∣∣EMt,u |ψu
s 〉〈ψu

s | = −
∑
t,u∈T

2k∑
r,s=1

∣∣ψt
r

〉〈
ψt
r

∣∣Mt,uE |ψu
s 〉〈ψu

s | = −PEP

from which it follows that PEP = 0. Theorem 1 implies there exists a recovery map.

In light of Theorem 4, we conclude that the minimum distance ofQ(S, T ) is at least the minimum
of the minimum weight of the elements of Centraliser(St,u) as t and u run over all pairs of
non-zero elements of T .

Note the difference between Theorem 2 and Theorem 4. In the latter case there are no errors
which act trivially on the code space. This is due to the fact that for distinct u, t ∈ T there is a j
for which uj 6= tj and for this j, Mj |ψu〉 6= Mj |ψt〉.
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3 The geometry of a direct sum of stabiliser codes

Let PG(k − 1, 2) denote the (k − 1)-dimensional projective geometry over F2, the field of two
elements. This geometry consists of points which are the non-zero vectors of Fk

2 and lines,
which are three points {u, v, u+ v}, and higher dimensional subspaces, which are obtained from
subspaces of Fk

2 by removing the zero vector.

If Centraliser(S) does not have any elements of weight one then an additive [[n, k, d]] stabiliser
code Q(S) is entirely equivalent to a set X of n lines in PG(n− k − 1, 2) with the property that
any co-dimension two subspace is skew to (does not intersect) an even number of the lines in X ,
see [8] and [2, Lemma 3.6].

A set of generators of the abelian subgroup S can be obtained from X by constructing a
(n− k)× 2n matrix G, whose i-th and (i+ n)-th column is a basis for the i-th line of X , where
i ∈ {1, . . . , n}. Recall from the previous section that we defined a map τ so that the j-th row
of G is τ(Mj), where M1, . . . ,Mn−k is a set of generators for S. The code generated by G will
be denoted by C = τ(S). If Q(S) is pure then the minimum distance d can be obtained from
the geometry as the size of the minimum set of dependent points on distinct lines of X , see [8]
or [2]. For the sake of completeness, observe that C⊥s = τ(Centraliser(S)). The symplectic
weight of an element v ∈ F2n

2 is the size of the support

Support(v) = {i ∈ {1, . . . , n} | (vi, vi+n) 6= (0, 0)}.

Since an element of v ∈ C⊥s is symplectically orthogonal to all the rows of G, an element of
symplectic weight w will give a dependence of w points on the w lines of X corresponding to
the elements of Support(v).

In the case of impure codes we have to discount the dependencies in which the lines of X
which do not contain dependent points are contained in a hyperplane (a co-dimension one
subspace), which also contains the dependent points, see [2]. However, for the purposes of
this article, Theorem 4 bounds the minimum distance of Q(S, T ) below by the minimum of
Centraliser(St,u). This is obtained geometrically as the size of the minimum set of dependent
points on distinct lines of Xt,u, obtained from the subgroup St,u.

Let T be a subset of Fn−k
2 . Let t, u be distinct non-zero elements of T and let At,u be a

(n − k) × (n − k) non-singular matrix whose first two columns are t and u. In the previous
section we noted that A−1t,uG is another generator matrix for C and that we can find another set

{M ′
i |i = 1, . . . , n− k}

of generators of S, where M ′
i is obtained from the i-th row of A−1t,uG. We then defined St,u as the

subgroup of S generated by M ′
3, . . . ,M

′
n−k. As above, let Xt,u be the quantum set of lines of

PG(n − k − 3, 2) we obtain from the subgroup St,u. The geometric path from X to Xs,t is to
project the set of lines X to a set of lines in PG(n− k− 3, 2) from the points t and u. Recall that
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to project from the i-th canonical basis element we simply delete the i-th coordinate. Therefore,
after changing the basis with At,u, we project from t and u by deleting the first two coordinates.
In the subgroup setting this is equivalent to removing M ′

1 and M ′
2 from the set of generators.

Thus, the code Q(S, T ) is equivalent to a set X of n lines in PG(n− k − 1, 2) with the property
that any co-dimension two subspace is skew to an even number of the lines of X , together with a
set of points T \ {0} whose pairs project the lines of X onto a set of lines in PG(n− k − 3, 2).
Since every co-dimension two subspace of PG(n− k − 1, 2) is skew to an even number of the
lines of X , it is immediate that in the projection this property holds too. Thus, the projection from
t and u of X is onto a quantum set of lines Xt,u in PG(n− k − 3, 2) which gives the subgroup
St,u, by the construction described above. Therefore d(Xt,u), the size of the minimum set of
dependent points on distinct lines of Xt,u, as t and u vary over all pairs of non-zero elements
of T , is a lower bound for the minimum distance of Q(S, T ). We have proved the following
theorem.

Theorem 5. Let T ⊂ Fn−k
2 . Let X be the quantum set of lines given by the abelian subgroup S.

The code Q(S, T ) is a ((n, |T |2k, d)) code, where

d > min
t,u

d(Xt,u),

as t and u vary over all pairs of non-zero elements of T .

There are at least two possible ways to proceed to use Theorem 5.

The most straightforward would be to start with an abelian subgroup S, where Q(S) is a pure
[[n, 2k, d′]] code. This will allow us to construct a quantum set of lines X in PG(n− k− 1, 2) and
try to find the largest T ⊂ Fn−k

2 with the property that d(Xt,u) is at least d, as t and u vary over
all pairs of non-zero elements of T . One may choose any d 6 d′, although in many cases that
choosing d = d′ results in T = {0} and one is not able to construct anything more than Q(S).

We construct a graph Γ whose vertices are the points of T and where t and u are joined by an
edge if and only if d(Xt,u) > d and choose T to be a largest clique in Γ.

Consider for example the [[5, 0, 3]] code Q(S), where S is the abelian subgroup generated by

M1 = XZ11Z
M2 = ZXZ11
M3 = 1ZXZ1
M4 = 11ZXZ
M5 = Z11ZX

Here, we are suppressing the tensor product symbol between the matrices.
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Following the discussion above, the matrix

G =


1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0


and the set of lines

X = {〈e1, e2 + e5〉, 〈e2, e1 + e3〉, 〈e3, e2 + e4〉, 〈e4, e3 + e5〉, 〈e5, e1 + e4〉},

where ei is the i-th element in the canonical basis of F5
2.

There are 16 points in PG(4, 2) which are not incident with any line of X . We define a graph Γ
whose vertices are these 16 points and where two points t and u are joined by an edge if and
only if they project X onto a set of lines. Note that the condition d(Xt,u) > 2 is redundant. The
edge condition can be verified by checking that t, u and x are linearly independent for any point
x incident with a line of X .

A short computation using GAP [7] reveals that Γ has 60 edges and 6 cliques of size 5. Thus,
choosing one of these, we set

T = {(0, 0, 0, 0, 0), e1 + e2 + e4, e2 + e3 + e5, e1 + e3 + e4, e2 + e4 + e5, e1 + e3 + e5}.

Then, Theorem 5 implies Q(S, T ) is a ((5, 6, 2)) code.

The second possible way to apply Theorem 5 is to fix T and then try and construct X (and hence
S). Suppose, as in the previous paragraph, we would like to construct a ((5, 6, 2)) code. We need
to find a quantum set of lines X , with the property that no point incident with a line of X is
spanned by two points of T . This will ensure that the projection of X from any two points of T
is onto a set of lines of PG(2, 2).

If four of the elements of T \ {0} span a two-dimensional subspace π, (i.e. a PG(2, 2)) then
the lines of X must be skew to π, otherwise there is a point incident with a line of X which is
in the span of two points of T \ {0}. This contradicts the fact that X is a quantum set of lines.
Likewise, if five of the elements of T \ {0} span a three-dimensional subspace π then any point
of π is in the span of two points of T , which implies that the lines of X must be skew to π, a
hyperplane of PG(4, 2), which is impossible.

Thus, we can assume the elements of T \ {0} are linearly independent and can choose a basis so
that

T = {(0, 0, 0, 0, 0), e1, e2, , e3, e4, e5}.

We can now try and deduce S. The projection Xt of X , from any point of t ∈ T \ {0}, should be
a set of 5 lines in πt, a three-dimensional space PG(3, 2). These lines are not incident with the
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basis points, otherwise the projection onto PG(2, 2) from two points of T would not be a set of
lines. Since Xt is a quantum set of lines it has the property that every line of πt is skew to an
even number of the lines of Xt. Since no line of Xt is incident with a basis point, each weight
2 point (a point spanned by two basis points) must be incident with a line of Xt. Furthermore,
every line not incident with a basis point is incident with a weight two point. Therefore, four of
the lines of Xt are incident with one weight two point and one of them is incident with two. Up
to permutation of coordinates suppose the latter line joins e1 + e4 and e2 + e3. The other four
lines consist of two weight 3 points and a weight 2 point. Therefore, up to a permutation of the
coordinates, the unique configuration of lines is given in Figure 1. The lines of Xt are in bold.

e1 + e3

e2 + e3

e3 + e4

e1 + e2 e2 + e4

e1 + e3 + e4

e1 + e4 e1 + e2 + e3 + e4

e1 + e2 + e4

e1 + e2 + e3e2 + e3 + e4

Figure 1: The unique quantum set of lines Xt not incident with the basis points.

Therefore, up to permutation of the coordinates, we deduce that four of the five rows of G are
0 0 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 0
1 1 0 0 1 0 1 1 1 1
1 1 1 0 0 1 0 1 1 1


Since the projection of any two of the basis points projects onto a point of PG(2, 2) there can be
no points of weight two on the lines of X . Therefore

G =


u1 1 1 1 u5 u1 + 1 u7 0 u9 u5 + 1
0 0 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 0
1 1 0 0 1 0 1 1 1 1
1 1 1 0 0 1 0 1 1 1


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for some u1, u5, u7, u9. Since
n∑

i=1

(uivi+n − viui+n) = 0,

for any two rows u and v of G, we deduce that

u1 = u5 6= u7 = u9.

This gives two solutions which generate the same subgroup, the subgroup S ′ generated by

M ′
1 = ZY XY Z

M ′
2 = ZZY XY

M ′
3 = Y ZZY X

M ′
4 = XY ZZY

M ′
5 = Y XY ZZ

Observe that M ′
iM
′
i+1M

′
i+3 = Mi (indices read modulo n), so S ′ = S.

Thus we have proved that, up to permutation of the non-identity Pauli operators in a coordinate
and a permutation of the coordinates (the qubits), the ((5, 6, 2)) code is unique.

4 Stabiliser codes as direct sums of stabiliser codes

In this section we investigate the problem of determining when Q(S, T ) is itself a stabiliser code.
Obviously a necessary condition is that |T | = 2r for some r. In the following theorem, we prove
a sufficient condition.

Theorem 6. Let S be an abelian group of size 2n−k and let T be an r-dimensional subspace.
Then Q(S, T ) = Q(S ′) for some subgroup S ′ of S of size 2n−r−k.

Proof. By applying a change of basis, we can assume that

T = (0, . . . , 0) ∪ 〈en−k−r+1, . . . , en−k〉.

Let {M1, . . . ,Mn−k} be a set of generators of S. For all |ψ〉 ∈ Q(S, T ),

Mi |ψ〉 = |ψ〉 ,

for i ∈ {1, . . . , n− k − r}. Hence,

Q(S, T ) 6 Q(S ′),

where the subgroup S ′ is generated generated by {M1, . . . ,Mn−r−k}.
Since dimQ(S, T ) = dimQ(S ′) = 2r+k, we have Q(S, T ) = Q(S ′).
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Is is tempting to believe that the contrary statement is also true. That if Q(S, T ) = Q(S ′) for
some subgroup S ′ of S then T must be a subspace. However, this is not the case. For example, if

T = {e1, e2}

then dimQ(S, T ) = 2k+1 and since

Q(S, T ) 6 Q(S ′),

where S ′ is generated by −M1M2,M3, . . . ,Mn−k, we conclude that Q(S, T ) = Q(S ′).

The following theorem, which is equivalent to [18, Theorem 2], states that any stabiliser code
can be obtained as a direct sum of one-dimensional stabiliser codes.

Theorem 7. Let Q(S ′) be a [[n, k, d]] stabiliser code. Then Q(S ′) = Q(S, T ) for some S ⊇ S ′

of size 2n and some k-dimensional subspace T ⊂ Fn
2 . Hence, any stabiliser code is the direct

sum of [[n, 0, d′]] stabiliser codes for some d′ > d.

Proof. Let {M1, . . . ,Mn−k} generate S ′. We can extend S ′ to an abelian subgroup S of size
2n, where S ′ ⊇ S. This is most easily seen in the binary code setting, where we can extend
τ(S) = C < C⊥s , to a code C ′ > C such that C ′ = (C ′)⊥. We can extend{M1, . . . ,Mn−k} to a
set {M1, . . . ,Mn} which generate S ′. If we then set

T = 〈en−k+1, . . . , en〉,

we have that Q(S ′) = Q(S, T ).

Note that since Centraliser(S ′) > Centraliser(S), it follows that d′ > d.

5 Graphical non-additive stabiliser codes

The case k = 0 is equivalent to graphical quantum error-correcting codes. To see this, note that
we can choose a basis for the geometry so that the initial n× n matrix of G is the identity matrix.
We can then choose a basis for each line of X so that the i-th coordinate of the (i+ n)-th column
in zero. The matrix G is then of the form (In | A) for some n× n matrix A. The condition (1)
implies that A is symmetric, so we can interpret A as the adjacency matrix of a simple graph Γ
on n vertices. The elements of T can then be described by colouring the appropriate vertices in
|T | copies of the graph, see [18, Figure 1].

In [18], the set T is called a coding clique. The condition in Theorem 5 is given as a purely
combinatorial condition. One makes a set R of subsets of {1, . . . , n} which consists of, for each
subset U of the vertices of Γ of size at most d−1, the symmetric difference of the neighbourhood
of U . One then deduces the largest set T of subsets of {1, . . . , n} with the property that the
symmetric difference of any two elements of T is not an element of R.
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Theorem 5 allows us to interpret this condition geometrically. We consider U as a subset of at
most d− 1 points incident with distinct lines of X . We let R be the set of points of PG(n− 1, 2)
which are in the span of the points in U . The set T is a set of points of PG(n − 1, 2) with the
property that no two points of T span a point in R.

Let us consider, as an example, the ((9, 12, 3)) code. The matrix

G =



1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0


and the set of lines

X = {〈e1, e2 + e9〉, 〈e2, e1 + e3〉, 〈e3, e2 + e4〉, 〈e4, e3 + e5〉, 〈e5, e4 + e6〉,

〈e6, e5 + e7〉, 〈e7, e6 + e8〉, 〈e8, e7 + e9〉, 〈e9, e1 + e8〉}.

We consider the span of two points on lines of X and their intersection with the 5-dimensional
subspace π, defined by

X2 +X6 = 0, X3 +X8 = 0, X5 +X9 = 0.

One can quickly verify that only 27 points of π are in the span of two points incident with lines
of X . We restrict the vertices of the graph Γ to the remaining 36 points of π. A quick calculation
on GAP shows that this graph has 12 cliques of size 11. The structure of the 11 non-zero points
of T , obtained from one of these cliques, is a cone with vertex point (1, 0, 0, 1, 0, 0, 1, 0, 0) and
a base of five linearly independent points. For example, one can take T be be the following
vectors.

(0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 1, 0, 1, 0, 0, 1, 1) (0, 0, 1, 1, 0, 0, 0, 1, 0) (0, 1, 0, 0, 1, 1, 0, 0, 1)
(0, 1, 0, 1, 0, 1, 1, 0, 0) (0, 1, 1, 0, 1, 1, 1, 1, 1) (1, 0, 0, 1, 0, 0, 1, 0, 0) (1, 0, 1, 0, 0, 0, 1, 1, 0)
(1, 0, 1, 1, 1, 0, 1, 1, 1) (1, 1, 0, 0, 0, 1, 0, 0, 0) (1, 1, 0, 1, 1, 1, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0, 1, 1)

6 Qupit non-additive stabiliser codes

Perhaps the most useful aspect of the geometrical construction of non-additive stabiliser codes
is that it directly generalises to the qupit case, i.e. when the local dimension is any prime p.
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There are a few differences that need to be pointed out. The points of PG(n− k − 1, p) are the
one-dimensional subspaces of Fn−k

p and lines are two-dimensional subspaces of Fn−k
p . Note that

there are p+ 1 one-dimensional subspaces contained in a two-dimensional subspace, so in the
geometry there are p+ 1 points incident with a line. The condition that if X is a quantum set of
lines of PG(n− k − 1, p) then every co-dimension two subspace is skew to an even number of
lines no longer holds. However, given an abelian subgroup S, the construction of the quantum
set of lines X follows in the same way. Following Ketkar et al [12], we define the Pauli operators
on (Cp)⊗n as follows.

Let {|x〉 | x ∈ Fn
p} be a basis of (Cp)⊗n and let ω be a primitive complex p-th root of unity.

Define
X(a) |x〉 = |x+ a〉

for each a ∈ Fn
p and

Z(b) |x〉 = ωx·b |x〉 .

for each b ∈ Fn
p .

The Pauli group, for p > 3, is

{ωcX(a)Z(b) | a, b ∈ Fn
p , c ∈ Fp}.

We define the non-additive stabiliser code for a subset T ⊆ Fn−k
p and an abelian subgroup S of

the Pauli group as before. For t ∈ T ,
Qt(S)

is the intersection of the eigenspaces of eigenvalue 1 of ωtiMi (i = 1, . . . , n− k) and

Q(S, T ) =
⊕
t∈T

Qt(S).

For t, u ∈ T \ {0} defining distinct points of PG(n − k − 1, p), the set of lines Xt,u is again
defined as the set of lines of PG(n− k − 3, p) obtained from X be projection from t and u.

Then all proofs work as before, although in the proof of Theorem 4 we need to modify slightly
the argument. If E 6∈ Centraliser(St.u) then we deduce that there is an Mt,u ∈ St,u such that

EMt,u = ωiMt,uE,

for some i ∈ {1, . . . , p− 1}. Note that, since

EM j
t,u = ωijM j

t,uE,

we can always find an Mt,u ∈ St,u such that

EMt,u = ωMt,uE.
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Thus, we have that
PEP = ωPEP,

from which it follows that PEP = 0.

Theorem 5 generalises to the following theorem, where the subscript in ((n,K, d))p indicates the
local dimension.

Theorem 8. Let T ⊂ Fn−k
p . Let X be the quantum set of lines given by the abelian subgroup

S. The code Q(S, T ) is a ((n, |T |pk, d))p code, where d is at least the size of the minimum set of
dependent points on distinct lines of Xt,u, as t and u vary over all pairs of non-zero elements of
T defining distinct points of PG(n− k − 1, p).

For example, let X be the quantum set of 11 lines PG(6, 3) obtained from the following 7× 22
matrix over F3,

G =



1 2 2 0 0 2 0 2 0 2 2 0 1 2 2 2 0 0 0 1 2 0
0 1 0 2 2 0 1 1 1 0 0 2 0 0 2 2 0 2 0 1 1 0
1 0 2 1 1 0 2 0 0 2 0 0 1 1 0 1 0 0 1 2 0 0
0 1 2 2 1 1 2 2 0 0 1 0 2 0 0 0 0 2 1 2 1 0
2 2 1 1 0 0 2 2 0 2 2 0 2 0 1 1 2 1 1 1 2 1
0 0 1 2 0 2 2 2 0 0 2 2 1 2 1 1 2 0 1 2 2 0
0 0 0 1 1 1 2 0 1 0 2 2 0 1 1 2 0 1 2 0 0 0


and let T be the set of the following nine points.

(0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 1) (2, 0, 0, 0, 0, 0, 2)
(1, 0, 1, 1, 0, 1, 1) (2, 0, 2, 2, 0, 2, 2) (1, 0, 2, 2, 0, 2, 1)
(2, 0, 1, 1, 0, 1, 2) (0, 0, 1, 1, 0, 1, 0) (0, 0, 2, 2, 0, 2, 0)

One can check that the projection from any pair of non-zero points t, u of T is onto a quantum
set of lines Xt,u of PG(4, 3) with the property that no point is incident with two lines of Xt,u.
This latter property implies that the size of the minimum set of dependent points on distinct
lines of Xt,u is at least 3, since two points are dependent if and only if they are the same point.
One can check that T is a subspace so, by Theorem 6, Q(S, T ) is a [[11, 6, 3]]3 stabiliser code.
Furthermore, this is an optimal stabliser code for an [[11, k, 3]]3 code since there is no quantum
MDS code (a code attaining the quantum Singleton bound) with these parameters. Recall that
the quantum Singleton bound, proved by Rains in [15], states that

k 6 n− 2(d− 1),

which in this case gives k 6 7. However, the existence of an [[11, 7, 3]]3 stabiliser code can be
ruled out, since there is no additive MDS code of length 11 over F9, see [3].
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7 A recipe for constructing non-additive stabiliser codes

Theorem 8 leads to the following recipe for the construction of non-additive stabiliser codes of
length n and minimum distance d.

• Choose a graph on n vertices whose edges are labelled by elements of Fp (non-edges are
labelled by zero) and form the n× 2n matrix G = (In | A), where A is the (symmetric)
adjacency matrix of the graph.

• Let X be the quantum set of n lines of PG(n− 1, p), whose i-th line is the span of the i-th
and (i+ n)-th column of G and let P be the set of points which are incident with a line of
X .

• Either calculate the set R of points of PG(n − 1, p) which are not in the span of d − 1
or less points of P and choose k linearly independent points K from R or simply find k
linearly independent points K which are not in the span of d− 1 or less points of P .

• Project X from the (k − 1)-dimensional subspace spanned by the points of K onto a
quantum set of lines X ′ of PG(n− k − 1, p).

• Calculate the set R′ of points of PG(n− k − 1, p) which are not in the span of d− 1 or
less points of P ′, the points incident with lines of X ′.

• Make a graph Γ whose vertices are the points in R′ and where u, v are joined by an edge if
and only if the subspace spanned by u and v and any d− 1 points of P ′ has (projective)
dimension d, i.e. these d+ 1 points are linearly independent.

• Find a large, preferably the largest, clique C in the graph Γ.

• Let T be the subset of Fn−k
p which contains the zero vector and any vector which spans

a one-dimensional subspace which is a projective point in C and let S be the abelian
subgroup obtained from X ′.

• Then Q(S, T ) is a ((n, pk|T |, d))p code.

This generalises the method set out in [18] which is a combinatorial interpretation of this method
in the case k = 0 and p = 2. Note that if k = 0 the graph Γ will often be so large that finding a
large clique C will be hard. The advantage here is that we can choose k large enough, so that the
graph Γ, which has less than pn−k vertices, is small enough to allow clique finding algorithms to
be implemented. The example in Section 5 indicates that another trick is to restrict the vertices of
Γ to a well chosen subspace π, which has a small intersection with R (or R′ if we choose k > 0).
This again reduces the size of the graph Γ so that clique finding algorithms can be implemented.
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