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Abstract

We prove that the cyclic and constacyclic codes constructed by Grassl and Rétteler in
[6] are generalised Reed-Solomon codes. This note can be considered as an addendum to
Grassl and Rétteler [6]. It can also be considered as an appendix to Ball and Vilar [4], where
Conjecture 11 of [6], which was stated for Grassl-Rotteler codes, is proven for generalised
Reed-Solomon codes. The content of this note, together with [4], therefore implies that
Conjecture 11 from [6] is true.

1 Introduction

Let IF, denote the finite field with ¢ elements.
The weight of an element of I is the number of non-zero coordinates that it has.

A k-dimensional linear code of length n and minimum distance d over F, denoted as a [n, k, d],
code, is a k-dimensional subspace of ' in which every non-zero vector has weight at least d.

The Singleton bound for linear codes states that
nz>k+d—1
and a linear code which attains the Singleton bound is called a maximum distance separable

codes, or MDS code for short.

It is a simple matter to prove the bound n < g + k£ — 1 and the MDS conjecture, for linear codes,
states that if 4 < k£ < ¢ — 2 then
n<q+ 1
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For values of k outside of this range it is not difficult to determine the longest length of a linear
MDS code. The MDS conjecture is known to hold for ¢ prime [1], where it was also proven
that if £ # (¢ + 1)/2 and ¢ is prime then a [¢ + 1, k, ¢ + 2 — k|, MDS code is a generalised
Reed-Solomon code.

Let {a1,...,a,} be the set of elements of F,.

A generalised Reed-Solomon code over I, is

D = {(01f(a1),... veqf(aq)aeqﬂfk—l) | f € FQ[XL deg f <k —1}, (1)

where f; denotes the coefficient of X*in f(X) and 6; € F, \ {0}.
The Reed-Solomon code is the case in which ¢; = 1, for all j.

We note that our definition of a (generalised) Reed-Solomon code is what some authors call
the extended or doubly extended Reed-Solomon code. That is, many authors do not include
the final coordinate or the evaluation at zero. However, a more natural definition of the Reed-
Solomon code, which is entirely equivalent to the above, is obtained by evaluating homogeneous
polynomials f € F [X;, X5] of degree k& — 1, at the points of the projective line,

D ={(61f(ay,1),...,0,f(a;1),0,41f(1,0)) | f € F,[ X1, X5, fhomogeneous, deg f = k—1}.
()

2 Generalised Reed-Solomon codes

In this section we prove that a generalised Reed-Solomon code can be constructed as an evaluation
code, evaluating at the (¢ + 1)-st roots of unity of F,.. Thus, any generalised Reed-Solomon
code can be obtained in this way by multiplying the ¢-th coordinate by a non-zero 0; € I, as in
definition (1)) and (2)).

Let {1, ..., g1} be the set of (¢ + 1)-st roots of unity of IFe.

Lemma 1. If k is odd then the code
C = {(h(ar) + h(a1)?, ..., hlagp) + hagi1)?) | h € Fpe[X], degh < $(k —1)}
isalq+1,k,q+2— k], generalised Reed-Solomon code.
Proof. Note that C' is a subspace over F,, and that it has size ¢* since the constant term of
h(X) + h(X)?

is an element of IF,. Thus, C'is a k-dimensional subspace of IFgH.



Let
(k—1)/2

Z X

Suppose that {1, e} is a basis for F 2 over F,.
For v, a (¢ + 1)-st root of unity, let 21, xo € IF, be such that

o = (z; +exy) L.

Observe that as (x1, z5) vary over the points of the projective line, o will run through the distinct
(g + 1)-st roots of unity.

Then
(k—1)/2

h(a) + h(a)? = Z iy + exy) Y 4 () + exy)' Y

=0
(k—1)/2
Z ci(ry + e%xy) (21 + exs) ™ + Xy + exq) (2 + elwy) "
=0

= (21 + exq) k- DatL/2 ( Z ci(1 4 exg) FD/2 gy 4 )R D/2H

+c () + %)(kfl)/ui(ml + equ)(kfl)/sz).
Note that (z; + ex,)~#~D@+)/2 ¢ F_ does not depend on h(X).

Thus, the coefficient of z ‘xk I=1 of

D cilwr + ewg)FTIET @y 4 g FTI (@ 4 earn) BT () 4 edag) B

is also an element of F,. Hence, the a coordinate of a codeword of C' is the evaluation of a
homogeneous polynomial in I, [z, zo] of degree £ — 1, multiplied by a non-zero element of F,.
By definition (2)), we conclude that such a code C'is a generalised Reed-Solomon code. [

The previous lemma only applies to the case when £ is odd. The following lemma deals with the
case k is even.

Lemma 2. For o, a (q + 1)-st root of unity, let w; be such that o; = wf_l. If k is even then the
code

C = {w(fh(oq) +w1h(a1)q, Cen ,wg+1h(aq+1> +wq+1h(aq+1)q) ‘ h e FQQ [X], degh < %]{7 - 1}

isalq+1,k,q+2— k], generalised Reed-Solomon code.



Proof. The proof is similar to that of Lemmal|I] In this case we have that, w = 1 + ez, and so

k—1

wih(a) + wh(a)? = Ci(@1 + es) DT 4 () 4 eqy) im0+
i=0

D=

= (21 + exg)—(%k—l)(qﬂ) (Z ci(z1 + exg)%k—l—i(xl + eqxg)%k—l—i
q Lhti Lp—1-
+cl(z1 + exq) 2" (z1 + elxg)2 .

The coefficient of a:]lx];_J -1

1 . 1 . 1 ) 1 A
ZCi(Il +6x2)§k_1_Z(I1 + eql‘g)ﬁk—ﬂ +Cg($1 + exg)ﬁk—iﬁ(xl +€qx2)§k—1—z’
7

is an element of IF;. Thus, the lemma follows in the same way as LemmalI] 0

3 Grassl-Rotteler cyclic and constacyclic MDS codes

The k-dimensional cyclic or constacyclic code (g) of length n over IF,, where
n—k
9(X) =) X’ €F[X],
=0

is a linear code of length n spanned by the £ cyclic shifts of the codeword

(coy--yCnk,0,...,0).

It is a cyclic code if ¢ divides X™ — 1 and constacyclic code if ¢ divides X™ — 7, for some 1 # 1.
See [2]] or [8]] for the basic results concerning cyclic codes.

In [6], Grassl and Rotteler introduced three [q + 1, k, ¢ + 2 — k], MDS codes, the first two are
constructed as cyclic codes and the third as a constacyclic code. As mentioned in the introduction,
it follows from [[1]] that when ¢ is prime, these codes are generalised Reed-Solomon codes. In
this section we shall prove that they are generalised Reed-Solomon codes for all q.

Let w be a primitive element of F2 and let « = w?!, a primitive (¢ + 1)-st root of unity.
The Grassl-Rotteler codes depend on the parity of ¢ and k.
For ¢ and k both odd, and ¢ and k both even, the Grassl-Rétteler code is (g ), where



For k odd and ¢ even, the Grassl-Rotteler code is the cyclic code (gs), where

lgtr+1
a(X)= T[] X-a).
i:%q—r
And for k even and ¢ odd, the Grassl-Rétteler code is the constacyclic code (g3), where

r

gs(X) = [ (X —wa),

i=—r+1
It is a simple matter to check that for i € {1,2,3}, g; € F,[X] and for i € {1, 2}, the polynomial
g; divides X9t — 1 and g5 divides X 9! — 9F1,

We now treat each of the four cases, which depends on the parity of k£ and ¢, in turn and prove
that they are all generalised Reed-Solomon codes.

Let {e1, ..., eq1} be the canonical basis of FI*.

Let 5 € [F 2 be such that 5 + 7 = 1.

Theorem 3. If k and q are both odd then the [q + 1,k,q + 2 — k|, code (g1) is a generalised
Reed-Solomon code.

Proof. Let c; be defined by

r 2r+1
g1(X) = H (X —a') = Z c; X7
i=—7 7=0

Observe that &k = g — 2r.
We will prove that, fora € {0,...,k — 1},

q+1—k+a
s a —k+a
Z (—1)*ceaorr = (0,...,0,(=1)%, ..., (1) FF 1 40,...,0)
s=a a k—1—a

are the evaluations of polynomials,
h(X) 4+ h(X)?

where h € F2[X] is of degree at most (k — 1)/2, evaluated at the (¢ + 1)-st roots of unity.

Lemma |1| implies that if we multiply the (s + 1)-th coordinate of the codewords in (g;) by
(—1)* then we obtain a generalised Reed-Solomon code, which implies that (g;) is a generalised
Reed-Solomon code.



Fora € {0,...,k — 1}, define

(g—1)/2 2r4+1 2r+1 2r+1
= 3 Do XU S o1+ ) X
=1 j5=0 7=0

Foralli € {0,...,r},
q
> _cial =0,
j=0

since g;(a’) = 0. Thus, the degree of h, is at most (¢ — 1)/2 —r = (k — 1) /2.
We have that

(g=1)/2 2r+1 2r+1 2r+1
Z cjo ta=s)(_1)s 4 Z 1) 5 + Z c;B(—
i=1 j=0 7=0
Since,
(a-1)/2 q
( Z Cjai(jJrafs))q — Z cal i(j+a— 8)
i=1 i=(q+3)/2
and 7 + 87 = 1, it follows that
2r41 ¢
ha(0®) + he(0®) = (=1)" ) ) " cja/tite?),
j=0 =0

Since > 7 ;" = O unless j = 0, in which case it is one,
ho(a®) + ho(a®)? = (—=1)%cs_q,

which is precisely what we had to prove. 0

We next deal with the case k and ¢ are both even, since this is again the code (g;).

Theorem 4. If k and q are both even then the [q + 1, k,q + 2 — k|, code (g1) is a generalised
Reed-Solomon code.

Proof. We can simply copy the proof of Theorem 3| until we define h,(X). Then we have to
define h,(X) differently, partly because we will apply Lemmal[2]in place of Lemmal 1]

Fora € {0,...,k — 1}, define

1
29 2r41 2r+1

ZZCJ i(j+a) qu—l-ZCﬂXQq

i=1 5=0



Observe that, since g;(a’) = 0, which implies that
q ..
Z cja’ =0
=0

forall i € {0,...,r}. Thus, the degree of h, is at most 3¢ — r — 1 = 3k — 1.

As before, let w be a fixed primitive element of F 2 and let v = w?™!, a primitive (g + 1)-st root
of unity. Then

1
29 2r41 2r+1
E E cjo i(j+a— 8)a28q+ § :C]BOéQSq
=1 75=0
and so
1
29 2r41 1 2r+1 1
,sh E:E:C] ]+a5a2sqs+§:cﬂq&2sqs
i=1 j=0 7=0

1 1
Since, f + 57 =1 and o 2°77° = 2%, it follows that

2r+1 q

1 o
he(0®) + a *he(a®) = a2 Z Z c;a'Uta=s),

=0 i=0

Since Y7 ;" = 0 unless j = 0, in which case it is one,

1
ho(a®) + a he(a®)! = a2™cy_,.

Hence,
1
W hg () + why(a®)? = w25@H e

1
Lemmaimplies that if we multiply the (s-+1)-th coordinate of the codewords in (g ) by w2*(@Y)
then we obtain a generalised Reed-Solomon code, which implies that (g;) is a generalised Reed-

Solomon code. O]

The next theorem deals with the case k is odd and ¢ is even. In this case the Grassl-Rotteler code

is (g2)-

Theorem 5. If k is odd and q is even then the [¢ + 1, k,q + 2 — k|, code (g2) is a generalised
Reed-Solomon code.



Proof. Let c; be defined by

%q+r+1 2r 42
p(X)= [] X-a)=) ¢x.

Z_lq T ]:0

=3

Observe that k = q¢ — 2r — 1.
As in Theorem [3| we look for polynomials /,(X ) which allow us to apply Lemmal|l]
Fora € {0,...,k — 1}, let

2q 2r4+2 2r4+2
E E ¢ a(z+2q)(3+a X2q+1 z+ § :CJB
=1 7=0

Observe that, foralli € {3¢+1,..., 3¢+ 7+ 1},

q

A —
E cja? =0,

=0
since g1 (a’) = 0. Thus, the degree of h, is at most 3¢ + 1 — (r +2) = 3(k — 1).

We have that )

29 2r42 2r+2
z+ q)(j+a—s
=20 ™ +Zfaﬁ
=1 5=0
and so
1
29 2742 2r4-2
1
q_§ :E :coz( Z+2‘1+)(]+a s +§ :C]ﬁq

i=1 7=0

Since, 5 + (7 = 1, it follows that
2r4+2 gq
ho(®) + ho(o®)? = Z c;alUta=s),
j=0 i=0
Since > 7 ;" = O unless j = 0, in which case it is one,

ho(a®) 4+ he(a®)? = cs_q.

Lemma implies that (g;) is a generalised Reed-Solomon code.

Finally, we deal with the case k is even and ¢ is odd, which is the constacyclic code (gs).



Theorem 6. If k is even and q is odd then the [q + 1,k,q+ 2 — k|, code (g3) is a generalised
Reed-Solomon code.

Proof. Let c; be defined by

T

g3(X) = H —wa') ZCJX]

i=—r+1
Observe that k = ¢ — 2r + 1.

As in Theorem we look for polynomials h,(X) which allow us to apply Lemma
Fora € {0,...,k— 1}, let

127"

(g+
1 .
E E wa+a i(5+a) x5 (a+1)—i

=1 75=0

L
2

Observe that, for all i € {0,...,7},

2r

It —
g cjw’a”? =0,
=0

since g3(wa’) = 0. Thus, the degree of h, isatmost 3(¢+ 1) — (r+1) = 1k — 1.

We have that
L+ o

ha(as)z Z ij—l-acjai(j—&-a—s)(_l)s'

i=1  j=0

and, since w? = wa,

1
2 (Q+1) 2r

,sh q_ Z Zw]Jra )(j+a— s)( 1)5
=1 j5=0

Hence, it follows that

qg+1 2r
ha(ozs) + aisha(OéS)q _ Z ij+acjai(j+afs)(_1)s.
i=1 j=0

Since - ¥ = 0 unless j = 0, in which case it is one,

ho(a®) + a *he(a®)? = w®(—1)°cs_q.
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Hence,
W ha(0f) + wiha(a®)? = WD (—1)%c,_,.

Lemma 2 implies that if we multiply the (s + 1)-th coordinate of the codewords in (g3) by
(—w(@*1)s then we obtain a generalised Reed-Solomon code, which implies that (gs) is a
generalised Reed-Solomon code. [

4 Conclusions

This note was motivated by Conjecture 11 from [[6] which states that the minimum distance d of
the puncture code of the Grassl-Rotteler code satisfies

2% if1<k<q/2

d (g+1)(k—(q—-1)/2) if(¢+1)/2<k<g—1, godd
q(k+1—q/2) if g/2<k<q—1, qgeven
¢ +1 if k=gq.

This conjecture is proven in [4] for generalised Reed-Solomon codes, which combined with the
content of this note, implies that Conjecture 11 from [6] is indeed true.

It may be an interesting and worthwhile exercise to see if the other known [¢ + 1, k,q + 2 — k],
MDS codes can be easily obtained as evaluation codes, evaluating at the (¢ + 1)-st roots of unity.
It may even be that the evaluation is over a more exotic set of elements in some extension of F,,.
For completeness sake, we mention the other known [¢ + 1, k, ¢ + 2 — k], MDS codes.

For £ = 3 and ¢ even, there are many examples known. These can all be extended to a
l[¢+2,k,q+ 3 — k], MDS code. The columns of a generator matrix of such a code can be viewed
as a set of points in the projective plane PG(2, ¢). Such a set of points is known as a hyperoval.
For a complete list of known hyperovals, see [3, Table 1].

There are only two other known examples, up to duality.

The following is due to Segre [7]]. The linear code whose columns are the elements of the set
{67,277 [t € F} U{(0,0,0,1)}

isalq+1,4,q — 2], linear MDS code, whenever ¢ = 2" and (e, h) = 1.

The other is due to Glynn [3]. Let 1) be an element of Fy such that n* = —1. The linear code
whose columns are the elements of the set

{(1,¢, 82 +nt® 3, t4) | t € Fo} U {(0,0,0,0,1)}.

is a [10, 5, 6]o linear MDS code,
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