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Abstract. We show that there are graphs with n vertices containing no K5,5 which

have about 1
2n

7/4 edges, thus proving that ex(n,K5,5) ≥ 1
2 (1 + o(1))n7/4. This bound

gives an asymptotic improvement to the known lower bounds on ex(n,Kt,s) for t = 5
when 5 ≤ s ≤ 12, and t = 6 when 6 ≤ s ≤ 8.

1. Introduction

Let H be a fixed graph. The Turán number of H, denoted ex(n,H), is the maximum
number of edges in a graph on n vertices which contains no copy of H. The Erdős-Stone
Theorem from [7] gives an asymptotic formula for the Turán number of any non-bipartite
graph, and this formula depends on the chromatic number of the graph H.

When H is a complete bipartite graph, determining the Turán number is related to the
“Zarankiewicz problem” (see [3], Chap. VI, Sect.2, and [9] for more details and references).
In many cases even the question of determining the right order of magnitude for ex(n,H)
is not known.

Let Kt,s denote the complete bipartite graph with t vertices in one class and s vertices in
the other. Kővari, Sós and Turán [10] proved that for s ≥ t

(1.1) ex(n,Kt,s) ≤ 1
2
(s− 1)1/tn2−1/t + 1

2
(t− 1)n.

The best known general lower bounds, obtained by probabilistic constructions, are

ex(n,Kt,s) = Ω(n2−(s+t−2)/(st−1)),

see Erdős and Spencer [6], and

ex(n,Kt,t) = Ω((log n)1/(t
2−1)n2−(2/(t+1))),

see Bohman and Keevash [2].

The upper bound was shown to be asymptotically tight for s ≥ t = 2 (Erdős, Rényi and
Sós [5], Brown [4] for s = t = 2, Füredi [9] for s ≥ t = 2). Füredi [8] improved on the
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upper bound (1.1) proving that

ex(n,K3,3) = 1
2
n5/3 + o(n5/3),

for which Brown’s construction from [4] gives the lower bound.

Alon, Rónyai and Szabó [1] showed, by construction, that if s ≥ (t− 1)! + 1 then

ex(n,Kt,s) ≥ 1
2
(1 + o(1))dt(s− 1)1/tn2−1/t,

where dt is some constant.

The first open case for which the asymptotic behaviour of ex(n,Kt,s) is not known is
K4,4. The probabilistic lower bound gives ex(n,K4,4) ≥ cn8/5 + o(n8/5), but Brown’s
bound for ex(n,K3,3) implies ex(n,K4,4) ≥ 1

2
n5/3 + o(n5/3). The upper bound (1.1) gives

ex(n,K4,4) ≤ cn7/4 + o(n7/4).

The upper bound (1.1) for K5,5 gives ex(n,K5,5) ≤ cn9/5 + o(n9/5), whereas the proba-
bilistic lower bound for K5,5 gives ex(n,K5,5) ≥ cn5/3 + o(n5/3). In this article we shall
show that the graphs, considered by Alon, Rónyai and Szabó in [1], which contain no K4,7

in fact contain no K5,5, thus proving that

ex(n,K5,5) ≥ 1
2
(1 + o(1))n7/4.

This gives an asymptotic improvement to the lower bounds of ex(n,K5,s) for 5 ≤ s ≤ 12
and ex(n,K6,s) for 6 ≤ s ≤ 8.

2. The norm graph

Suppose that q = ph, where p is a prime, and denote by Fq the finite field with q elements.

We will use the following properties of finite fields. For any a, b ∈ Fq, (a+ b)p
i

= ap
i
+ bp

i
,

for any i ∈ N. Note that (a− b)pi = ap
i − bpi , since either pi is odd or −1 = 1. Secondly,

for all a ∈ Fqi , aq = a if and only if a ∈ Fq. Finally aq
2+q+1 ∈ Fq, for all a ∈ Fq3 , since

aq
3

= a .

Let Γ be the graph with vertices (a, α) ∈ Fq3 ×Fq, α 6= 0, where (a, α) is joined to (a′, α′)

if and only if (a + a′)q
2+q+1 = αα′. In [1] Alon, Rónyai and Szabó prove that Γ contains

no K4,7, our aim here is to show that it also contains no K5,5.

Let

V = {(1, a, aq, aq2 , aq+1, aq
2+1, aq

2+q, aq
2+q+1, 0) | a ∈ Fq3} ⊂ F9

q3 .

Let b be the symmetric bilinear form on F9
q3 defined by

b(x, y) =
8∑
i=1

xiy9−i − x9y9.
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Let ⊥ be defined in the usual way, so that given S ⊂ F9
q3 ,

S⊥ = {y ∈ F9
q3 | b(x, y) = 0, for all x ∈ S}.

We wish to define the same graph Γ, so that adjacency is given by the bilinear form.
Consider the graph Γ′ with vertex set the set of vectors x = v + αe9, where e9 =
(0, 0, 0, 0, 0, 0, 0, 0, 1), v ∈ V and α ∈ Fq, α 6= 0, and where two vertices x = v + αe9
and x′ = v′ + α′e9 are adjacent if and only if b(x, x′) = 0. It is a simple matter to verify
that the graph Γ′ is isomorphic to the graph Γ; we shall call it Γ from now on.

For any subset S of the vertices the common neighbours x of S satisfy b(x,w) = 0 for all
w ∈ S which, by linearity, is the condition b(x,w) = 0 for all w ∈ 〈S〉. Importantly, this
implies that the common neighbours of the vertices in S (the vertices in S⊥) are common
neighbours of all the vertices in 〈S〉.
If S contains two vectors of the form v + αe9 and v + α′e9 for some v ∈ V , then e9 ∈ 〈S〉
and the vertices of S have no common neighbours, since {e9}⊥ is the hyperplane defined
by the equation x9 = 0 and x9 6= 0 for any vertex of Γ.

Throughout the article dim will refer to vector space dimension.

The following lemma is a special case of [11, Theorem 3]. We include a proof here for the
sake of completeness.

Lemma 2.1. If |S| ≥ 4 and e9 6∈ 〈S〉 then dim(〈S〉) ≥ 4.

Proof. Let M be the 4×8 matrix whose i-th row is (1, ai, a
q
i , a

q2

i , a
q+1
i , aq

2+1
i , aq

2+q
i , aq

2+q+1
i ),

where (1, ai, a
q
i , a

q2

i , a
q+1
i , aq

2+1
i , aq

2+q
i , aq

2+q+1
i , α) ∈ S, and in which we can assume that

ai are pairwise distinct since e9 6∈ 〈S〉. It suffices to prove that rank(M) ≥ 4 since
dim(〈S〉) ≥ rank(M).

By elementary column operations rank(M) = rank(M∗), where M∗ is the 4 × 8 matrix
whose first row is (1, 0, 0, 0, 0, 0, 0, 0) and whose other rows are (1, ai− a1, (ai− a1)q, (ai−
a1)

q2 , (ai−a1)q+1, (ai−a1)q
2+1, (ai−a1)q

2+q, (ai−a1)q
2+q+1). We start by making the eighth

column of M∗ and then the seventh, sixth, etc, in the following way. For example, to make
the fifth column we add aq+1

1 times the first column, subtract aq1 times the second column
and subtract a1 times the third column giving aq+1

i − a1aqi − a
q
1ai + aq+1

1 = (ai − a1)q+1.

Considering the second, fifth, sixth and eighth columns of M∗, and dividing the i-th row
by ai − a1, (i = 2, 3, 4), we have that, rank(M) ≥ 1 + rank(M ′), where M ′ is the 3 × 4
matrix whose i-th row is (1, bi, b

q
i , b

q+1
i ), where bi = (ai+1−a1)q. Since x 7→ xq is a bijection

of Fq3 , the bi are pairwise distinct.

By elementary column operations rank(M ′) = rank(M ′∗) where M ′∗ is the 3 × 4 matrix
whose first row is (1, 0, 0, 0) and whose other rows are (1, bi − b1, (bi − b1)q, (bi − b1)q+1).
Just considering the second and fourth columns, and dividing the i-th row by bi − b1,
(i = 2, 3), we have that, rank(M ′) ≥ 1 + rank(M ′′), where M ′′ is the 2× 2 matrix whose
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i-th row is (1, ci), where ci = (bi+1 − b1)q. Since x 7→ xq is a bijection of Fq3 , c1 6= c2, and
so M ′′ has rank 2. Hence, M has rank 4. �

Define a subset of the projective space PG(8, q3) by

V ∗ = {〈(1, a, aq, aq2 , aq+1, aq
2+1, aq

2+q, aq
2+q+1, 0)〉 | a ∈ Fq3} ∪ {〈e8〉},

where e8 = (0, 0, 0, 0, 0, 0, 0, 1, 0).

Lemma 2.2. There is a group of linear automorphisms of F9
q3 that induces a 3-transitive

action on V ∗.

Proof. Consider the group of endomorphisms of F9
q3 generated by

σ((x1, . . . , x8, x9)) = (x8, x7, x6, x5, x4, x3, x2, x1, x9),

and for each λ ∈ Fq3 ,

τλ((x1, . . . , x8, x9)) = (x1, x2 + λx1, x3 + λqx1, x4 + λq
2

x1, x5 + λx3 + λqx2 + λq+1x1,

x6 + λx4 + λq
2

x2 + λq
2+1x1, x7 + λqx4 + λq

2

x3 + λq
2+qx1,

x8 + λx7 + λqx6 + λq
2

x5 + λq+1x4 + λq
2+1x3 + λq

2+qx2 + λq
2+q+1x1, x9)

and

αλ((x1, . . . , x8, x9)) = (x1, λx2, λ
qx3, λ

q2x4, λ
q+1x5, λ

q2+1x6, λ
q2+qx7, λ

q2+q+1x8, x9).

These linear maps are all automorphisms of V ∗ and act transitively. Indeed, if we write
a = 〈(1, a, aq, aq2 , aq+1, aq

2+1, aq
2+q, aq

2+q+1, 0)〉 then σ(a) = a−1, a 6= 0, σ(0) = 〈e8〉,
σ(〈e8〉) = 0, τλ(a) = a+ λ and αλ(a) = λa.

Moreover, the automorphisms τλ fix 〈e8〉 and act transitively on the remaining points. The
automorphisms αλ fix 〈e8〉 and 〈0〉 and act transitively on the remaining points. Thus,
the action is 3-transitive. �

We note that the group in Lemma 2.2 is isomorphic to PGL(2, q3).

Lemma 2.3. For any 4-dimensional subspace U of F9
q3 either |U ∩ V | ≤ 4 or |U ∩ V | ≥ q.

Proof. Let us suppose that |U ∩ V | ≥ 5. Thus U∗ = {〈u〉 | u ∈ U} has the property that
|U∗ ∩ V ∗| ≥ 5, since V intersects any 1-dimensional subspace in at most one vector.

By Lemma 2.2, we can assume that four of the points in this intersection are 〈v1〉, 〈v2〉,
〈v3〉 and 〈v4〉, with v1 = (0, . . . , 0, 1, 0), v2 = (1, 0, . . . , 0), v3 = (1, . . . , 1, 0) and v4 =

(1, a, aq, aq
2
, aq+1, aq

2+1, aq
2+q, aq

2+q+1, 0) for some fixed a 6= 0, 1.
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Since dimU = 4 the fifth point in this intersection 〈v5〉,
where v5 = (1, b, bq, bq

2
, bq+1, bq

2+1, bq
2+q, bq

2+q+1, 0) for some b 6= 0, 1, a, is a linear combi-
nation of these 4 vectors. Therefore, there are λ1, λ2, λ3, λ4 ∈ Fq3 for which

(1, b, bq, bq
2

, bq+1, bq
2+1, bq

2+q, bq
2+q+1, 0) =

4∑
i=1

λivi.

If λ4 = 0 then the second, third and fifth coordinates give λ3 = b, λ3 = bq and λ3 = bq+1,
which imply λ23 = λ3 = b, a contradiction since b 6= 0, 1. If λ3 = 0 then the second,
third and fifth coordinates give λ4a = b, λ4a

q = bq and λ4a
q+1 = bq+1, which imply

λ24 = λ4 = b/a, a contradiction since b 6= 0, a. Hence, we can assume that λ3λ4 6= 0.

Considering the second, third and fourth coordinates we have b = λ3 +λ4a, bq = λ3 +λ4a
q

and bq
2

= λ3 +λ4a
q2 which give b−bq = (a−aq)λ4 and bq

2−b = (aq
2−a)λ4. Applying the

map x 7→ xq to the latter equation gives b− bq = (a− aq)λq4 and so 0 = (a− aq)(λ4− λq4).
If a 6∈ Fq then λ4 ∈ Fq. Now applying the map x 7→ xq to b = λ3 + λ4a, we have
bq = λq3 + λ4a

q and combining this with bq = λ3 + λ4a
q gives λ3 ∈ Fq. The second

and seventh coordinates give b = λ3 + λ4a, bq
2+q = λ3 + λ4a

q2+q and so bq
2+q+1 = (λ3 +

λ4a)(λ3+λ4a
q2+q) ∈ Fq. Since aq

2+q+1 ∈ Fq and λ3λ4 6= 0 this implies aq
2+q+a ∈ Fq. Thus,

aq
2+q + a = aq

2+1 + aq, which gives (aq − a)(aq
2 − 1) = 0 and so a ∈ Fq, a contradiction.

Therefore a ∈ Fq and for each b ∈ Fq, the vector (1, b, b, b, b2, b2, b2, b3, 0) is an Fq-linear
combination of v1, v2, v3 and v4. This implies |U∗ ∩ V ∗| ≥ q + 1. Now going back to the
vector space, noting that e8 6∈ V , we have |U ∩ V | ≥ q. �

Theorem 2.4. For q ≥ 7 the graph Γ contains no K5,5.

Proof. Let S be a set of 5 vertices of Γ.

If S contains two vectors of the form v + αe9 and v + α′e9 for some v ∈ V , then e9 ∈ 〈S〉
and the vertices of S have no common neighbours, since {e9}⊥ is the hyperplane H defined
by the equation x9 = 0, and all vertices of Γ have x9 6= 0.

Therefore, suppose that e9 6∈ 〈S〉. By Lemma 2.1, we have that dim(〈S〉) ≥ 4. Moreover,
we can suppose that e9 6∈ S⊥ since e9 ∈ S⊥ implies S ⊂ H, which it is not.

If dim(〈S〉) = 4 then consider U = 〈S, e9〉 ∩ H. The subspace U is 4-dimensional and
contains at least 5 vectors of V and so by Lemma 2.3 it contains at least q vectors of V .
For each u ∈ U ∩ V , there exists an α ∈ Fq3 such that u + αe9 ∈ 〈S〉. We want to prove
that α ∈ Fq, α 6= 0, and hence conclude that u+αe9 is a vertex of Γ. We can assume that
there are two vertices u′ + α′e9, u

′′ + α′′e9 ∈ S⊥, since otherwise the vertices in S have at
most one common neighbour. Note that α′, α′′ ∈ Fq, α′, α′′ 6= 0, u′, u′′ ∈ V , and u′ 6= u′′

since e9 6∈ S⊥. Now u+ αe9 ∈ S and u′ + α′e9 ∈ S⊥ implies

b(u+ αe9, u
′ + α′e9) = (a+ b)q

2+q+1 − αα′ = 0,
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where
u = (1, a, aq, aq

2

, aq+1, aq
2+1, aq

2+q, aq
2+q+1, 0)

and
u′ = (1, b, bq, bq

2

, bq+1, bq
2+1, bq

2+q, bq
2+q+1, 0).

Since α′ ∈ Fq, α′ 6= 0, we can conclude that α ∈ Fq. If α = 0 then b = −a and so if we
repeat the above replacing u′+α′e9 with u′′+α′′e9 we have that u′ = u′′, a contradiction.
Thus α ∈ Fq, α 6= 0, and u + αe9 is a vertex of Γ. This implies that 〈S〉 contains at
least q vertices of Γ. As mentioned before, the common neighbours of the vertices in S
(the vertices in S⊥) are common neighbours of all the vertices in 〈S〉. In [1] Alon, Rónyai
and Szabó prove that Γ contains no K4,7, so S⊥ contains at most 3 vertices of the graph,
hence the five vertices of S have at most 3 common neighbours.

If dim(〈S〉) = 5 then, since b is non-degenerate, dimS⊥ = 4. The subspace U = 〈S⊥, e9〉∩
H is 4-dimensional and so by Lemma 2.3 contains at most 4 vectors of V or at least q. If
|U ∩ V | ≤ 4 then S⊥ contains at most 4 vertices of Γ, since e9 6∈ S⊥, and so the vertices
in S have at most 4 common neighbours. Finally, consider the case |U ∩V | ≥ q. For each
u ∈ U ∩V , there exists an α ∈ Fq3 such that u+αe9 ∈ S⊥. We want to prove that α ∈ Fq,
α 6= 0, and hence conclude that u+ αe9 is a vertex of Γ. For each vertex u′ + α′e9 ∈ S

b(u+ αe9, u
′ + α′e9) = (a+ b)q

2+q+1 − αα′ = 0,

where
u = (1, a, aq, aq

2

, aq+1, aq
2+1, aq

2+q, aq
2+q+1, 0)

and
u′ = (1, b, bq, bq

2

, bq+1, bq
2+1, bq

2+q, bq
2+q+1, 0).

Since α′ ∈ Fq, α′ 6= 0, we can conclude that α ∈ Fq. If α = 0 then b = −a and so for each
vertex v + βe9 in S, v = u′, which is a contradiction since e9 6∈ 〈S〉. Thus α ∈ Fq, α 6= 0,
and u + αe9 is a vertex of Γ. Therefore, S⊥ contains at least q vertices of Γ and so the
vertices in S have at least q common neighbours. However, this implies that Γ contains
a K5,7 and therefore a K4,7, which is not the case. �
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