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Quantum error-correcting codes and their geometries

Simeon Ball1, Aina Centelles and Felix Huber2

Abstract. This is an expository article aiming to introduce the reader to the under-

lying mathematics and geometry of quantum error correction. Information stored on

quantum particles is subject to noise and interference from the environment. Quan-

tum error-correcting codes allow the negation of these effects in order to successfully

restore the original quantum information. We briefly describe the necessary quantum

mechanical background to be able to understand how quantum error-correction works.

We go on to construct quantum codes: firstly qubit stabilizer codes, then qubit non-

stabilizer codes, and finally codes with a higher local dimension. We will delve into

the geometry of these codes. This allows one to deduce the parameters of the code

efficiently, deduce the inequivalence between codes that have the same parameters,

and presents a useful tool in deducing the feasibility of certain parameters. We also

include sections on quantum maximum distance separable codes and the quantum

MacWilliams identities.
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We have used various sources in the preparation of this article, princi-

pally Gottesman [8, 9], Glynn et al [7] and Ketkar et al [14]. The most

original parts of these notes are Section 4 and Section 6. Section 5 is based

on Ketkar et al [14] but massaged so that appears as a straightforward

generalisation of the qubit case of Section 2. Although the main results

of Section 3 are from Glynn et al [7], in a deviation from their approach

we have chosen to prove these results without using the F4 trick, which

we do not consider until later in Section 5.5. The interested reader is re-

ferred to the books by Sakurai [18] and Nielsen & Chuang [15] for standard

treatments of quantum mechanics and quantum information theory, to the

book by Haroche & Raimond [11] for a thorough treatment of current exper-

iments in quantum mechanics, and to the book by Aaronson [1] for further

connections to mathematics, computer science, physics, and philosophy.

For those uninitiated in quantum mechanics or quantum computing, we

strongly recommend the delightful mnemotic essay on quantum computing

by Matuschak and Nielsen at https://quantum.country/qcvc.

1. Quantum codes

1.1. Introduction. A qubit is a two-state or two-level quantum-mechanical

system. For example, the intrinsic angular momentum (spin) of an electron

is such a system. It can only take two values when measured in arbitrary

spatial direction, say by measuring the electrons deflection when passing by

an inhomogeneous magnetic field. The two corresponding spin-states are

commonly referred to as as “spin up” and “spin down” states with respect

to that direction. Another example is the polarization of light. Here the

two states can be taken to be vertically and horizontally polarized light;

another choice is light that is left circularly and right circularly polarized.

In general, a continuum of different photon polarizations are possible. Yet

only two distinct states are observed when e.g. putting beamsplitters or

polarization filters in the path of a light beam.

This raises the question: why are only ever two discrete values corre-

sponding to two discrete states observed, if electrons and photons can take

https://quantum.country/qcvc
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on a continuum of possible spin-directions or polarizations? The answer

lies with what measurements on quantum systems reveal. It turns out that

for a two-state quantum-mechanical system, any individual measurements

can only ever reveal the answer to a binary question. In other words, the

measurement indicates in which of two mutually exclusive states the qubit

can be found after the measurement. Thus while qubits can take on a con-

tinuity of states and a continuity of measurements can be performed, only

two-valued results can ever be obtained. Thus the notion of a qubit as a

quantum bit. We will not dwell on the strangeness of quantum mechanics

further, the interested reader is referred to discussions of the Stern-Gerlach

and double-slit experiments such as found in the books by Sakurai [18] and

Haroche & Raimond [11] 1.

In mathematical terms a qubit is represented by a unit vector in C2.

The spin up and spin down (or any other choice of a pair of physically

completely distinguishable states) are represented by an orthonormal basis

|0〉 and |1〉. The notation |0〉 is a shorthand for the vector

[
1

0

]
and |1〉 stands

for

[
0

1

]
. The two kets |0〉 and |1〉 are also known as the computational basis

vectors.

Consider now the state

|ψ〉 =
1√
2

(|0〉+ |1〉) =
1√
2

[
1

1

]
. (1)

While |ψ〉 ∈ C2 represents a physically unique state, it is, upon measure-

ment in the spin-up – spin-down direction, found in either of these two

directions with equal probability. Sometimes this situation is referred to as

the system being “in two states simultaneously”. A more accurate descrip-

tion is that the system is “in superposition of spin-up and spin-down”, or

in other words, the system is correctly described as a linear combination of

spin-up and spin-down.

A typical qubit reads

|α〉 = α0|0〉+ α1|1〉 .

As usual, z is the complex conjugate of the complex number z. When

measured, the qubit is with probability α0α0 found in state |0〉 (“spin-up”)

1 For a visualisation of these experiments, see http://toutestquantique.fr/en/spin/ and

http://toutestquantique.fr/en/duality/

http://toutestquantique.fr/en/spin/
http://toutestquantique.fr/en/duality/
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and with probability α1α1 found in state |1〉 (“spin down”). Since the sum

of these two probabilities must be one, we have that for a qubit

α0α0 + α1α1 = 1. (2)

The “ket” notation |α〉 is used for a column vector, whilst the “bra”

notation 〈α| is used for a row vector whose coordinates are the complex

conjugates of the coordinates of |α〉. Thus, the “bra” 〈α| is a linear form.

The inner product or “bra-ket” on C2 is defined as

〈α|β〉 = α0β0 + α1β1.

The normalisation condition in Eq. (2) then reads as 〈α|α〉 = 1, and qubits

are represented by complex vectors in C2 of unit length.

A unitary transformation of C2 is given by a non-singular 2 × 2 matrix

U which preserves this inner product, so

〈Uα|Uβ〉 = 〈α|β〉 ,

for all 〈α| and |β〉. The set of such unitaries forms the special unitary group

SU(2).

In particular,

〈Uα|Uα〉 = 〈α|α〉 = 1.

The matrix

U =

(
0 −i
i 0

)
is an example of a unitary transformation since

〈Uα|Uβ〉 = (−iα1 〈0|+ iα0 〈1|)(−iβ1 |0〉+ iβ0 |1〉)

= iα0(iβ0) +−iα1(−iβ1) = 〈α|β〉 .
Note that {|0〉 , |1〉} is an orthonormal basis, so

〈0|0〉 = 〈1|1〉 = 1

and

〈0|1〉 = 〈1|0〉 = 0.

The Hermitian conjugate M† of the linear operator M is the operator

which satisfies

〈Mψ|φ〉 = 〈ψ|M†φ〉.
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An operator M is Hermitian if M = M†. In matrix terms this is equivalent

to the conjugate transpose being the same as the matrix itself. For example,(
1 2 + i

2− i 2

)
defines a Hermitian operator on C2.

Let M be a linear operator defined on a complex space with orthonormal

basis B. The trace of M is defined as

tr(M) =
∑
|ψ〉∈B

〈ψ|M |ψ〉 .

We can easily prove that the trace of an operator does not depend on the

basis chosen. Firstly, note that

tr(MN) =
∑
|ψ〉∈B

〈ψ|MN |ψ〉 =
∑

|ψ〉,|φ〉∈B

〈ψ|M |φ〉 〈φ|N |ψ〉 .

∑
|ψ〉,|φ〉∈B

〈φ|N |ψ〉 〈ψ|M |φ〉 =
∑
|φ〉∈B

〈φ|NM |φ〉 = tr(NM),

hence

tr(PMP−1) = tr(P−1PM) = tr(M).

In matrix terms, the trace is equal to the sum of the elements on the

principal diagonal.

The Pauli matrices,

σ0 =

(
1 0

0 1

)
, σx =

(
0 1

1 0

)
, σz =

(
1 0

0 −1

)
, σy =

(
0 −i
i 0

)
,

are unitary linear transformations of C2 which form a basis for the space

of 2 × 2 matrices. In general, any error - also those which are not unitary

- affecting a single qubit can be written as a linear combination of the

Pauli matrices. We sometimes denote σ0, σx, σy, σz simply as I,X, Y, Z

respectively. Note that the Pauli matrices are both unitary and Hermitian.

They are also mutually orthogonal under the Hilbert-Schmidt inner product

〈A,B〉 = tr
(
A†B

)
.

A measurement or observable is represented by a hermitian operator.

For example, the spin-up – spin-down measurement σ̂z is represented by

the Pauli matrix σz
2.

2 This direction is commonly referred to as the “z-direction” in the x-y-z axis scheme.
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The outcome of an individual measurement can only take two values.

These correspond to the eigenvalues of σz which are +1 and −1. After

the measurement, the state is then found in the corresponding eigenstate:

in |0〉 if the outcome +1 was obtained, and in |1〉 if the outcome −1 was

obtained. These occur with probabilities

p0 = |〈α|0〉|2

and

p1 = |〈α|1〉|2,
respectively.

An expectation value is obtained by the repeated measurement of iden-

tically prepared spin particles. Measuring the spin value of σ̂z on a qubit

|α〉 = αo |0〉+ α1 |1〉

yields the expectation value

〈σ̂z〉 = 〈α|σz |α〉 = tr(σz |α〉〈α|) = α2
0 − α2

1.

One can check that this leads to the correct expectation value of

〈σ̂z〉 = p0 · (+1) + p1 · (−1) = α2
0 − α2

1 = 〈α|σz |α〉 .

The above treatment can be generalised. Denote by Â an observable

which is represented by a Hermitian matrix A. Let mi and |mi〉 be its

eigenvalues and corresponding eigenvectors. Measuring an observable Â on

a quantum state |α〉 yields the values mi with probability pi = |〈α|mi〉|2.
The state is found in the corresponding eigenstates afterwards.

This leads to the expectation value

〈Â〉 = 〈α|A |α〉 = tr(A |α〉〈α|).

The description of multiple quantum systems takes place in the tensor

product space of the individual Hilbert spaces. Thus a system of n qubits

is described in the n-fold tensor product space of the one-qubit spaces.

One arrives at the 2n-dimensional Hilbert space (C2)⊗n = C2 ⊗ · · · ⊗C2 (n

times).

A density matrix is used to describe a classical probability distribution

(also called a statistical mixture or statistical ensemble) over quantum

states. Suppose that some source emits the quantum state |φi〉 with
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probability pi. One requires that pi ≥ 0 and
∑
i pi = 1. From the discussion

in the previous section, it is clear that the measurement of an observable

Â must yield an expectation value of

〈Â〉 =
∑
i

pi 〈φi|A |φi〉 .

By linearity, this can be rewritten as

〈Â〉 = tr

(
A
∑
i

pi |φi〉〈φi|
)
.

Indeed the operator

ρ =
r∑
i=1

pi |φi〉〈φi|

captures all there is to know about a quantum system and ρ is known as

the density matrix describing it.

For a complex matrix ρ to represent a quantum state, one requires ρ =

ρ†, 〈ψ| ρ |ψ〉 ≥ 0 for all |ψ〉 (positive-semidefinite) and tr(ρ) = 1. Comparing

with classical probability theory, this corresponds to a real valued, non-

negative, and normalized probability distribution. The density matrix

formalism can indeed be seen as a generalization of classical probability

theory and quantum mechanics can be taken to be the study of the cone

formed by complex positive-semidefinite matrices, and transformations

thereof. This is an analogy to the probability simplex encountered in

classical probability theory.

Now we can state what we left out in preceding discussion about mea-

surements: consider the case when some eigenvalues of the measurement

operator A =
∑
mi |mi〉〈mi| are equal, i.e. the spectrum of A is degen-

erate. What is the probability for obtaining outcome i and what is the

post-measurement state? Let Pj be the projector onto the eigenspace with

eigenvalue mj of A. Then a measurement yields outcome mj with prob-

ability pj = tr(Pjρ) and the density operator immediately after the mea-

surement reads

PjρPj
tr(Pjρ)

.

The time evolution of an isolated qubit is given by a unitary operator in

SU(2).

|α〉 7→ U(t) |α〉 .
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On a closed quantum system of n qubits, the time evolution is given by

unitary operators on Hsystem = (C2)⊗n. In case of a quantum system

interacting with its environment such unitaries can also act on a larger

system

Hsystem ⊗Henvironment.

A unitary on such a larger system can, on Hsystem, be represented in the

(non-unique) operator-sum or Krauss decomposition as

|α〉 7−→
∑
i

Ki |α〉〈α|K†i with the constraint
∑
i

K†iKi = 1.

Throughout 1 will denote the identity map. The operators Ki are also

known as Krauss operators.

More generally, this reads for a density matrix as

ρ 7−→
∑
i

KiρK
†
i with the constraint

∑
i

K†iKi = 1.

The above map is also known as a quantum channel or completely positive

map and represents the most general form of physical change a quantum

state can undergo. In the case of a classical (conventional) bit, an error is

represented by the bit-flip 0 � 1. For qubits, we regard any non-identity

unitary transformation or non-identity quantum channel as an error. We

can decompose any unitary or quantum channel in terms of a matrix basis.

A good choice is the Pauli group: it is generated by all possible tensor

products of the 4 Pauli matrices, together with phases ±1 or ±i. Observe

that σx, σz and σy anti-commute. That is,

σxσy = −σyσx , σxσz = −σzσx , σyσz = −σzσy

and that

σxσy = iσz , σyσz = iσx , σzσx = iσy .

Thus, the Pauli group Pn is a non-abelian group consisting of the 4n tensor

products of σ0, σx, σz and σy, which together with the four phases is a

group of size 4n+1.

A quantum error-correcting code is a linear subspace Q of (C2)
⊗n

into

which a number of logical qubits can be encoded such that all errors of

a certain type can be detected and/or corrected. The question we ask is

thus: given a noisy channel E , does there exist a recovery channel R, such

that every density matrix ρ, for which the image of ρ is contained in Q,
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can be recovered? In other words, for all density matrices ρ with spectral

decomposition

ρ =
∑
i

pi |φi〉 〈φi| ,

where |φi〉 ∈ Q, we require that

R ◦ E(ρ) = ρ.

1.2. A 1-qubit error-correcting quantum code. A classical code is a

subset of An, where A is a finite set called the alphabet and n is the length

of the code. The repetition code is the simplest type of code in which each

element a ∈ A is encoded as (a, a, . . . , a), an n-tuple of a’s. For example,

the binary repetition code of length 3 is {(000), (111)} and we encode

0 7→ 000

and

1 7→ 111.

This encoding allows us to correct up to one error by taking a majority

decision. In other words we decode the codewords

000, 001, 010, 100 as 0

and

111, 011, 110, 101 as 1.

Can we apply the same strategy to obtain a quantum code? Not quite.

A quantum repetition code (on three qubits for example) does not exist,

since we cannot map

|α〉 7→ |α〉 ⊗ |α〉 ⊗ |α〉 .

It would contradict the following (no-cloning) theorem.

Theorem 1.1. (no-cloning) There is no linear map which takes |α〉 to

|α〉 ⊗ |α〉 for all |α〉 ∈ (C2)
⊗n

.

Proof. Suppose there was such a map. Then

|α〉 7→ |α〉 ⊗ |α〉 ,

|β〉 7→ |β〉 ⊗ |β〉



10 S. Ball, A. Centelles and F. Huber

Such a map however is not linear, as

|α〉+ |β〉 7→ (|α〉+ |β〉)⊗ (|α〉+ |β〉)

6= |α〉 ⊗ |α〉+ |β〉 ⊗ |β〉 .

�

However, we could try the following repetition-type code

α0 |0〉+ α1 |1〉 7→ α0 |000〉+ α1 |111〉 .

Above and from now on, we simplify notation |0〉 ⊗ |0〉 as |00〉 , etc.

Suppose now a “bit-flip” σx happens on the second position. This gives

σ0 ⊗ σx ⊗ σ0
(
α0 |000〉+ α1 |111〉

)
= α0 |010〉+ α1 |101〉 .

One can correct such an error by majority decision,

α0 |010〉+ α1 |101〉 decodes as α0 |000〉+ α1 |111〉 .

One needs a measurement that indicates exactly where the bit-flip has

occurred. This can be done, as will be explained in Example 2.8.

However, we cannot correct a single σz error since

α0 |000〉 − α1 |111〉

is also a possible state of our code.

Shor [19] was the first to introduce a quantum code which can correct any

single-qubit error. He circumvented this apparent problem by introducing

a majority decision on the signs to correct a σz error.

Example 1.2. (Shor code)

The coding space for the Shor code is (C2)⊗9 and a qubit is encoded as

|α〉 7→ |αL〉

according to

|0L〉 = (|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

and

|1L〉 = (|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).
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Hence, by linearity,

α0 |0〉+ α1 |1〉 7→ α0(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)
+ α1(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).

Suppose that we have a σx error (bit-flip) occuring on the 4-th bit. Then

the α0 term would change to

(|000〉+ |111〉)⊗ (|100〉+ |011〉)⊗ (|000〉+ |111〉)

which we would detect and correct by taking the majority decision as with

the classical error-correcting code, so we decode

|100〉+ |011〉 as |000〉+ |111〉 .

Now suppose we have σz error (phase error) occuring on the 7-th bit.

Then the α0 term would be

(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉 − |111〉)

which we would detect and correct by taking the majority decision on the

signs.

Since σy = iσxσz, we can also correct σy errors since the two decisions

we made above are independent of each other. Note that the scalar i does

not play a role in the decoding.

1.3. The orthogonal projection onto a subspace. Let Q be a subspace

of (C2)
⊗n

and let Q⊥ be its orthogonal subspace with respect to the

standard inner product defined on (C2)
⊗n ∼= C2n . Any vector |ψ〉 can

be written (uniquely) as the sum of a vector P |ψ〉 ∈ Q and P⊥ |ψ〉 ∈ Q⊥.

The map

|ψ〉 → P |ψ〉
is a linear map, called the orthogonal projection onto Q.

Lemma 1.3. If {|ψ1〉 , |ψ2〉 , . . . , |ψk〉} is an orthonormal basis for Q then

P =
k∑
i=1

|ψi〉 〈ψi| .

Proof. For any j 6 k,

P |ψj〉 =
k∑
i=1

|ψi〉 〈ψi|ψj〉 = |ψj〉 ,
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so P |ψ〉 = |ψ〉 for all |ψ〉 ∈ Q.

Furthermore,

P |ψ〉 =
k∑
i=1

|ψi〉 〈ψi|ψ〉 = 0

for all |ψ〉 ∈ Q⊥. �

Clearly, by definition, P 2 = P . By Lemma 1.3, P is Hermitian, since it

is the sum of Hermitian operators. The following lemma implies that this

is enough to characterise P .

Lemma 1.4. If P is a linear Hermitian operator for which P 2 = P and

whose image is Q then P is the orthogonal projection onto Q.

Proof. The operator P is Hermitian, so it is diagonalisable with real

eigenvalues. Since P 2 = P , its eigenvalues are 0 and 1. By the spectral

decomposition theorem,

P =
k∑
i=1

|ψi〉 〈ψi| ,

where {|ψ1〉 , |ψ2〉 , . . . , |ψk〉} is an orthonormal basis for its eigenspace with

eigenvalue 1. Since

P |ψj〉 = |ψj〉

for all j = 1, . . . , k, the eigenspace with eigenvalue 1 contains im(P ), the

image of P .

The eigenspace with eigenvalue 0 is im(P )⊥. Thus, P is the orthogonal

projection onto im(P ). �

1.4. Error-detection and correction. For the reliable transmission of

an (unknown) quantum system over a noisy channel, we are now faced

with three major challenges.

(1) Measurement disturbance. As explained in Section 1.1, measurements

induce an “update” of the state that is measured. Thus, when

obtaining error syndromes in order to understand what error has

occurred, the underlying quantum state may be altered.

(2) Continuous set of errors. The set of errors is continuous and not

discrete. How can we distinguish and correct for an error set this

large?
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(3) No-cloning. Unknown quantum states cannot be copied. Thus an

approach of adding redundancy as done for a classical repetition code

is bound to fail.

How can these challenges be overcome? Firstly, the syndrome measure-

ments are chosen such that they stabilise the set of quantum states that

consist of the code. In this way, all code states remain unchanged when

extracting the syndromes, while erroneous states are changed in reversible

fashion. Second, the linearity of quantum mechanics implies that when

some discrete set of errors can be corrected, then one can correct all er-

rors which lie in their span. We shall not show a proof of this here, but

one can be found in [8, Theorem 2] and [5]. Lastly, the encoded quantum

information is distributed amongst many systems and thus “hidden” from

any noisy channel. In this way the state does not have to be copied and no

redundancy is added. This not only gives rise to the below Knill-Laflamme

conditions on error correction, but also provides an information theoretic

interpretation of quantum error-correction.

In quantum error-correction one is faced with the following task. Let

N (·) =
∑
µ

Eµ(·)E†µ, where
∑
µ

E†µEµ = 1,

be a quantum channel. Given the channel N , for which codes Q does there

exist a recovery channel R such that R ◦N (ρ) = ρ for all

ρ =
∑
i

pi |φi〉 〈φi| ,

where |φi〉 ∈ Q?

It turns out that the set of correctable states form subspaces. The

following theorem gives a necessary and sufficient condition for a recovery

channel to exist.

Theorem 1.5 (Knill-Laflamme conditions). Let Q be a subspace of (Cd)⊗n.

The channel N (·) =
∑
µEµ(·)E†µ can be corrected by a code Q if and only if

for all |φ〉 , |ψ〉 in Q and errors Eµ, Eν

〈φ|E†µEν |ψ〉 = cµν 〈φ|ψ〉 ,
for some cµν ∈ C.

This condition implies the following two essential properties.

1. Orthogonal code states remain orthogonal under the action of errors,

if 〈φ|ψ〉 = 0 then 〈φ|E†µEν |ψ〉 = 0,
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and thus orthogonal codewords remain orthogonal under the noise.

2. The expectation value of E†µEν is constant when |φ〉 ranges over the set

of code states. In other words, for all quantum states |φ〉 , |ψ〉 ∈ Q,

tr
[
|φ〉〈φ|E†µEν

]
= 〈φ|E†µEν |φ〉 = 〈ψ|E†µEν |ψ〉 = cµν ,

In this way, the encoded quantum information is “hidden” from the noisy

channel.

Lastly, a set of errors E is said to be detectable if and only if all errors

E†µEν with Eµ, Eν ∈ E are correctable.

1.5. Error weights. We define the weight wt(M) of an operator M in the

Pauli group Pn to be the number of tensor factors which are not equal to

σ0. For example,

M = σx ⊗ σz ⊗ σ0 ⊗ σy ⊗ σ0
has weight three.

In classical codes the distance between any two elements of An is the

number of coordinates in which they differ. If the minimum distance of a

code C is at least 2t + 1 then C is a t-error correcting code (i.e. we can

correct errors if up to t coordinates of a codeword change). In quantum

codes the same holds, if a quantum code can detect all errors of weight less

than 2t+ 1 then it is a t-error correcting code.

2. Qubit stabilizer codes

2.1. Definition and examples. Most quantum codes presently known

are stabilizer codes, and their usefulness lies partially in the fact that their

connection with classical codes allows for them to be described in an efficient

way. Here, we will mainly deal with stabilizer codes, although we will also

see examples of quantum codes in Section 4 which are not stabilizer codes.

A qubit stabilizer code Q(S) is the joint eigenspace with eigenvalue 1

of the elements of an abelian subgroup S of Pn not containing −1. The

subgroup S is also known as the stabilizer.

We will often define S as being generated by a set of n− k commuting

independent generators M1, . . . ,Mn−k of Pn. By independent, we mean

that M1, . . . ,Mn−k generate S,

〈M1, . . . ,Mn−k〉 =
{∏

Mα1
1 · · ·M

αn−k

n−k
∣∣α1, . . . , αn−k ∈ {0, 1}

}
= S



Quantum error-correcting codes and their geometries 15

while any smaller subset does not. Thus, the set of Mi’s are called

generators.

It is important to note that we require −1 6∈ S, since otherwise

Q(S) = {0}. We also assume that there is no coordinate in which every

element of S has a σ0 in that coordinate, as we could simply delete this

coordinate and this would not affect the error correcting capabilities of the

code.

Note that the phase of any element in S is ±1, since if

M = ±iσ1 ⊗ · · · ⊗ σn
then

M2 = −1 ∈ S,
which, as mentioned above, implies that Q(S) = {0}.

Example 2.1. Suppose n = 2 and S is generated by a single Pauli operator

M = σx ⊗ σz.
Let |α〉 ∈ (C2)⊗2. Then |α〉 can be written as

|α〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

for some αij ∈ C. Now,

M |α〉 = α00 |10〉 − α01 |11〉+ α10 |00〉 − α11 |01〉

Thus, |α〉 is in the eigenspace of M with eigenvalue 1 if and only if

α00 = α10, α01 = −α11.

We note that the dimension of Q(S) is 2.

We often use the short-hand notation σ0 = I, σx = X, σy = Y and

σz = Z, so in the previous example we might write M = XZ.

Example 2.2. Suppose n = 3 and S is generated by M1,M2,M3, where

M1 = σ0 ⊗ σx ⊗ σz
M2 = σ0 ⊗ σy ⊗ σx
M3 = σx ⊗ σz ⊗ σy .

In the shorthand notation we would write that S is defined by

M1 = I X Z

M2 = I Y X

M3 = X Z Y

.
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Observe that MiMj = MjMi for all i and j ∈ {1, 2, 3}. For example

M2M1 = (σ0⊗σy⊗σx)(σ0⊗σx⊗σz) = σ0⊗(−iσz)⊗(−iσy) = −σ0⊗σz⊗σy

and

M1M2 = (σ0 ⊗ σx ⊗ σz)(σ0 ⊗ σy ⊗ σx) = σ0 ⊗ iσz ⊗ iσy = −σ0 ⊗ σz ⊗ σy.

This can be checked quickly by verifying that different Pauli matrices

{σx, σy, σz} coincide in the same position in Mi and Mj (i 6= j) an even

number of times.

To find a basis for the stabilizer code, suppose that

|α〉 =
∑
ijk

αijk |ijk〉 .

is in the code space, i.e. that α is in the +1-eigenspace of all Mi.

Since

M1 |α〉 =
1∑
j=0

(αj00 |j10〉 − αj01 |j11〉+ αj10 |j00〉 − αj11 |j01〉)

We have that |α〉 is in the +1-eigenspace M̃1 = Im(I+M1) of M1 if and

only if

αj00 = αj10 and αj01 = −αj11.
Similarly,

M2 |α〉 = i
1∑
j=0

(αj00 |j11〉+ αj01 |j10〉 − αj10 |j01〉 − αj11 |j00〉)

Thus, |α〉 is in the +1-eigenspace M̃2 if and only if

iαj00 = αj11 and αj01 = −iαj10.

Finally,

M3 |α〉 = i(α000 |101〉 − α001 |100〉 − α010 |111〉+ α011 |110〉
+α100 |001〉 − α101 |000〉 − α110 |011〉+ α111 |010〉) ,

so |α〉 is in the +1-eigenspace M̃3 if and only if

iα000 = α101, α100 = −iα001, α111 = −iα010, α110 = iα011.
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Thus,

Q(S) = M̃1 ∩ M̃2 ∩ M̃3

is the one-dimensional subspace spanned by

|000〉 − i |001〉+ |010〉+ i |011〉 − |100〉+ i |101〉 − |110〉 − i |111〉 .

In fact, we seldom actually calculate a basis as for Q(S) as it is not

necessary in practice. We have only calculated this previous example so

one gets a feel of how laborious this is even for small parameters. From a

practical point of view it is enough to know the orthogonal projection P

for the subspace Q.

2.2. The dimension and minimum distance of a stabilizer code. Let

S be an abelian subgroup of Pn. Let Q(S) be the subspace defined as the

joint eigenspace of eigenvalue 1 of the elements of S. Let P = P (S) be the

orthogonal projection onto the subspace Q(S).

Lemma 2.3. The orthogonal projection is

P =
1

|S|
∑
E∈S

E.

Proof. Since S is an abelian subgroup, one has

MP = PM = P

for all M ∈ S.

Suppose that |ψ〉 ∈ Q(S). Then, P |ψ〉 = |ψ〉 and therefore |ψ〉 ∈ im(P ).

Vice versa, if |ψ〉 ∈ im(P ) then, for all M ∈ S,

M |ψ〉 = MP |φ〉 = P |φ〉 = |ψ〉 ,

so |ψ〉 ∈ Q(S). Thus, Q(S) = im(P ).

Since E† = E for all E ∈ Pn, we have that P † = P . Moreover,

P 2 = P
1

|S|
∑
M∈S

M =
1

|S|
∑
M∈S

PM =
1

|S|
∑
M∈S

M = P.

By Lemma 1.4, P = P (S).

�
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For the proof of the next theorem, it is worth noting that

tr(σ1 ⊗ · · · ⊗ σn) = tr(σ1) · · · tr(σn).

Thus, for all E ∈ Pn with phase ±1, where E 6= ±1, tr(E) = 0 and that

tr(1) = 2n.

Theorem 2.4. The stabilizer code Q(S) which is the joint +1-eigenspace of

an abelian subgroup S generated by n−k independent elements has dimension

2k.

Proof. By Lemma 2.3, the orthogonal projection onto Q(S) is

P =
1

|S|
∑
M∈S

M.

The image of P is its eigenspace of eigenvalue one and also Q(S).

The operator P is Hermitian and thus diagonalisable. Since P 2 = P

its eigenvalues are 0 and 1. The trace of P is equal to the sum of its

eigenvalues, which in the case of P is the dimension of the eigenspace of

eigenvalue one. Therefore, the dimension of Q(S) is equal to the trace of

P (S).

It only remains to note that

tr(M) = 0

for all M ∈ Pn with the exception of M = 1, in which case tr(1) = 2n.

Thus, dimQ = 2n/|S| = 2k.

�

Having ascertained the dimension of a stabilizer code, we go on to

determine its minimum distance.

Let Centraliser(S) denote the set of elements of Pn that commute with

all elements of S, i.e. the centraliser of S in the group Pn.

Lemma 2.5. E is an undetectable error for Q(S) if and only if E ∈
Centraliser(S) \ S.

Proof. We proceed by contradiction.

(⇒) Suppose that E is undetectable but that E 6∈ Centraliser(S) \ S.
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Since any two elements of Pn either commute or anti-commute, E 6∈
Centraliser(S) implies there is a M ∈ S such that

EM = −ME.

Take any |ψ〉 , |φ〉 ∈ Q(S) with 〈ψ|φ〉 = 0. Then

〈ψ|E |φ〉 = 〈ψ|ME |φ〉 = −〈ψ|EM |φ〉 = −〈ψ|E |φ〉 ,

which implies 〈ψ|E |φ〉 = 0.

If E ∈ S then

〈ψ|E |φ〉 = 〈ψ|φ〉 ,
Hence, by Theorem 1.5, E is detectable, a contradiction.

(⇐) Suppose that E is detectable with E ∈ Centraliser(S) \ S. Let

|ψ〉 ∈ Q(S). Since E ∈ Centraliser(S),

ME |ψ〉 = EM |ψ〉 = E |ψ〉

holds for all M ∈ S, which implies that E |ψ〉 ∈ Q.

Extend {|ψ〉} to an orthonormal basis B for Q. Since E is detectable,

〈φ|E |ψ〉 = 0

for all |φ〉 ∈ B\{|ψ〉}. This implies that E |ψ〉 is in the subspace (B\{|ψ〉})⊥.

Since this subspace has as a basis {|ψ〉},

E |ψ〉 = λψ |ψ〉 ,

for some λψ ∈ C. Hence, |ψ〉 is an eigenvector of E.

By Theorem 1.5,

〈φ|E |φ〉 = λE ,

for all |φ〉 ∈ B. Since 〈ψ|ψ〉 = 1, this implies that λψ = λE.

The same argument as made above for |ψ〉 holds for all |φ〉 ∈ Q(S).

Thus, for all |φ〉 ∈ Q(S),

E |φ〉 = λE |φ〉 .
Since E 6∈ S, λE 6= 1.

The subgroup generated by S and λ−1E E defines a smaller stabilizer code,

so there is a |ψ〉 ∈ Q such that

λ−1E E |ψ〉 6= |ψ〉 ,

contradicting the above. Hence, E is not detectable. �
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In the case that k = 0, we have that Q(S) is a 1-dimensional subspace so

cannot be used to store quantum information and all errors are correctable

according to the definition. However, we do not rule out considering

such codes since for any proper subgroup S′ of S, the code Q(S′) will

be of interest. Since the elements of S \ S′ will be in Centraliser(S′) \ S′,
Theorem 2.6 indicates that it makes sense to define the minimum distance

of Q(S) to be equal to the minimum weight of the non-identity elements

of S. These codes are called self-dual, for reasons that will become clear in

Theorem 2.12.

Theorem 2.6. If k > 1 then the minimum distance of the 2k-dimensional

stabilizer code Q(S) with stabilizer group S is equal to the minimum weight

of the errors in Centraliser(S) \ S.

Proof. By Lemma 2.5, Q(S) can detect all errors which are not elements of

Centraliser(S) \ S. In particular, it can also detect all errors of weight less

than the minimum weight of an error in Centraliser(S) \ S. �

If there are elements of S whose weight is less than the minimum distance

of Q(S) then the code is called impure. If this is not the case then the code

is called pure.

We should mention that there is also the concept of a degenerate code.

According to Calderbank et al. [6], a nondegenerate code is one for

which different errors produce linearly independent results when applied

to elements of the code. Whereas a code is pure if distinct errors produce

orthogonal results. It is straightforward to verify that, for additive codes,

‘pure’ and ‘nondegenerate’ coincide. In general, however, a pure code is

nondegenerate but the converse need not be true.

We use the shorthand notation ((n,K, d)) to denote a quantum code

of (C2)
⊗n

of dimension K and minimum distance d. The notation [[n, k, d]]

denotes a quantum code of dimension 2k. If it is a stabilizer code Q(S) then

d is equal to the minimum weight of the elements in Centraliser(S) \ S.

We now rewrite the Shor code from Example 1.2 as a stabilizer code.

Example 2.7. (A [[9, 1, 3]] code) Let S be the subgroup generated by the
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following elements of P9.

M1 = σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M2 = σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M3 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M4 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0
M5 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0
M6 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz
M7 = σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σ0 ⊗ σ0 ⊗ σ0
M8 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx

In shorthand notation this would be written in the following way.

MI = Z Z I I I I I I I

M2 = I Z Z I I I I I I

M3 = I I I Z Z I I I I

M4 = I I I I Z Z I I I

M5 = I I I I I I Z Z I

M6 = I I I I I I I Z Z

M7 = X X X X X X I I I

M8 = I I I X X X X X X

One can check that Mi and Mj commute for any i and j.

Suppose that E is an error of weight at most 2. We want to prove that

E ∈ S or E does not commute with some Mi.

We proceed with a case-by-case analysis.

If E has weight one and a single X or Y then it does not commute with

one of M1, . . . ,M6. If E has weight one and a single Z then it does not

commute with one of M7,M8.

If E has weight two which are both X then, without loss of generality,

suppose there is a X in the first system. Then E must have a X or Y in the

second system so that it commutes with M1. But then it must also have

a X or Z in the third system so that it commutes with M2, contradicting

the fact that it has weight two.

We leave the case-by-case analysis as an exercise but conclude that the

only errors of weight two which commute with all the Mi are precisely those

which are in S, i.e. M1, . . . ,M6,M1M2,M3M4,M5M6.

We will prove that the minimum distance of this code is 3 in a very

simple manner once we have determined its geometry.
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An important observation here is that the Shor code is impure since S

contains errors of weight 2, whereas the minimum distance is 3.

We can store the same amount of information on fewer qubits with the

following code.

Example 2.8. (A [[5, 1, 3]] code) Let S be the subgroup generated by the

following elements of P5.

MI = X Z Z I X

M2 = Z X I Z X

M3 = I Z X Z Y

M4 = Z I Z X Y

This matrix makes the task of checking that MiMj = MjMi fairly quick.

We will prove that the minimum distance is 3 by considering its geometry

in Example 3.15.

Let us see how we can use this example to correct errors of weight one.

We perform measurements M̂i on E |φ〉. This will return a value ±1 (the

eigenvalues of Mi). This gives us a “syndrome”, a 4-tuple of signs for each

error E. These are given in the following tables.

M1 M2 M3 M4

XIIII + − + −
IXIII − + − +

IIXII − + + −
IIIXI + − − +

IIIIX + + − −

M1 M2 M3 M4

ZIIII − + + +

IZIII + − + +

IIZII + + − +

IIIZI + + + −
IIIIZ − − − −

M1 M2 M3 M4

Y IIII − − + −
IY III − − − +

IIY II − + − −
IIIY I + − − −
IIIIY − − + +

Since each syndrome is distinct we can use this look-up table to identify

the error and correct it. An important observation here is that when we

perform the measurement M̂i, only the sign of the state can possibly change.

Since

MiE |φ〉 = ±EMi |φ〉 = ±E |φ〉 ,
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E |φ〉 is an eigenvector of Mi, so after measuring we will be in the state

±E |φ〉. Thus, we can measure consecutively each measurement M̂i, for

i = 1, . . . , n− k.

2.3. Qubit stabilizer codes as binary linear codes. In this section we

introduce a connection between qubit stabilizer codes and classical binary

linear codes. We will go on to exploit this connection to construct qubit

quantum codes and then to realise a more general connection between

stabilizer codes and classical codes.

Let Fq denote the finite field with q elements. Consider the map

τ : {σ0, σx, σy, σz} → F2
2

defined by the following table.

τ :



σ0 7→ (0|0)

σx 7→ (1|0)

σz 7→ (0|1)

σy 7→ (1|1)

We extend the map τ to Pn by applying τ to an element of Pn coordinate-

wise, where the image of the j-th position of M is the j and (j + n)-th

coordinate in τ(M). For example,

τ(σx ⊗ σy ⊗ σ0 ⊗ σx ⊗ σz) = (11010 | 01001).

We draw the line between the n and (n + 1)-st coordinate, for readability

sake. We ignore the phase, so τ(λM) = τ(M) for all λ ∈ {±1,±i}.
Effectively, this defines the domain of the map τ as Pn/{±1,±i}.

Lemma 2.9. For all M,N ∈ Pn/{±1,±i},

τ(MN) = τ(M) + τ(N).

Proof. Observe that the multiplicative structure up to a phase factor (for

example we ignore the i in σy = iσxσz) is isomorphic to the additive

structure of F2
2. �

We have established a bijection between the elements of Pn/{±1,±i}
and F2n

2 . The above lemma implies that a subgroup S of Pn is in bijective
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correspondence with a subspace of F2n
2 . We now wish to ascertain what

property this subspace has if S is a subgroup generated by commuting

elements of Pn.

To this end, we define an alternating form for u,w ∈ F2n
2 ,

(u,w)a =
n∑
j=1

(ujwj+n − uj+nwj).

Lemma 2.10. For M,N ∈ Pn/{±1,±i},
MN = NM if and only if (τ(M), τ(N))a = 0.

Proof. Suppose u = τ(M) and w = τ(N). One can check directly that

ujwj+n − wjuj+n = 0

if and only if the Pauli matrices in the j-th position of M and N commute

and is ±1 otherwise.

The operators M and N commute if and only if there are an even number

of positions where the Pauli-matrices do not commute. This is the case if

and only if there are an even number of coordinates j for which

ujwj+n − wjuj+n = 1,

a condition equivalent to (τ(M), τ(N))a = 0. �

The symplectic weight of a vector v ∈ F2n
2 is defined as

|{i ∈ {1, . . . , n} | (vi, vi+n) 6= (0, 0)}|.

Lemma 2.11. The weight of M ∈ Pn is equal to the symplectic weight of

τ(M).

Proof. We have that n−wt(M) is equal to the number of σ0’s in M which

is equal to n minus the symplectic weight of τ(M). �

For a subspace C 6 F2n
2 , we define ⊥a as

C⊥a = {u ∈ F2n
2 | (u,w)a = 0, for all w ∈ C}.

Theorem 2.12. S is a subgroup of Pn generated by n − k independent

mutually commuting elements if and only if C = τ(S) is a (n−k)-dimensional

subspace of F2n
2 for which C 6 C⊥a . If k 6= 0 then the minimum distance of

Q(S) is equal to the minimum symplectic weight of the elements of C⊥a \C. If

k = 0 then the minimum distance of Q(S) is equal to the minimum symplectic

weight of the non-zero elements of C = C⊥a .
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Proof. The fact that C = τ(S) is contained in C⊥a follows from Lemma 2.9

and Lemma 2.10.

By Theorem 2.6, for k 6= 0, the minimum distance is equal to the

minimum weight of the images of the elements of Centraliser(S) under

τ , which are not elements of the image of S. Since C = τ(S) and

C⊥a = τ(Centraliser(S)), the theorem follows for k 6= 0.

For k = 0, by definition, the minimum distance is equal to the minimum

weight of the images of the elements of S under τ , which are the non-zero

elements of C. �

We can construct a generator matrix G(S) for C = τ(S) by taking the

(n− k)× 2n matrix whose i-th row is τ(Mi).

Lemma 2.13. S is a subgroup of Pn generated by n−k independent elements

if and only if the matrix G(S) has rank n− k.

Proof. There is a there is a proper subset J ⊆ {1, . . . , n− k} such that∑
j∈J

τ(Mj) = 0,

if and only if the rank of G(S) is not n − k. By Lemma 2.9, this is if and

only if ∏
j∈J

Mj = 1.

�

The following table makes for a useful reference.

Pn the Pauli group, given by n-fold tensor products of Pauli matrices

σ0, σx, σy, σz with phases {±i,±1}.
M1, . . . ,Mn−k the generators, a set of independent elements of Pn that generate S.

S the stabilizer, an abelian subgroup of Pn.

Q(S) the quantum code obtained as the joint intersection

of the eigenspaces of eigenvalue 1 of the operators in S.

Centraliser(S) the centraliser of S in Pn
C the subspace of F2n

2 obtained from the image of S under τ .

C⊥a the subspace of F2n
2 obtained as the image of Centraliser(S) under τ .

G(S) the (n− k)× 2n generator matrix for C whose i-th row is τ(Mi).

Example 2.14. (A [[5, 0, 3]] stabilizer code).
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Let S be the subgroup of P5 generated by the following pairwise

commuting elements.

M1 = X Z I I Z

M2 = Z X Z I I

M3 = I Z X Z I

M4 = I I Z X Z

M5 = Z I I Z X

The matrix G(S) for this code is
1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 0 0 1 0


One can check directly that (u, v)a = 0 for any two rows u, v of G(S).

Alternatively, it is enough to observe that A is symmetric and that

(I |A)(
At

I
) = At +A = A+A = 0.

We will prove in Example 3.15 that the minimum distance of Q(S) is 3.

Observe that any n×n symmetric matrix A gives a [[n, 0, d]] code, where

G(S) = (I | A). The difficulty lies in choosing A so that the symplectic

weight of the code generated by G (and hence d) is large.

3. The geometry of additive, linear and stabilizer codes

3.1. Additive and linear codes over a finite field. We recall that a

code of length n is a subset C of An, where A is a finite set called the

alphabet. An element of C is called a codeword.

The distance between any two elements of An is the number of coordi-

nates in which they differ. The minimum distance of C is the minimum

distance between any two codewords of C.

Suppose A is a finite abelian group with identity element 0. If u+v ∈ C
for all u, v ∈ C then we say that C is additive.

The weight of an element (codeword) u of an additive code is the number

of non-zero coordinates that it has.
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Lemma 3.1. If C is an additive code over an alphabet which is a finite abelian

group then the minimum distance d of C is equal to the minimum non-zero

weight w.

Proof. Summing u ∈ C enough times will eventually give the n-tuple of all

zeros, hence 0 = (0, . . . , 0) ∈ C. Note that this implies −u ∈ C too.

Suppose that u is a codeword of minimum weight w. Then since 0 ∈ C,

we have w > d.

Suppose that u and v are two codewords which differ in exactly d coor-

dinates. Then u− v is a codeword in C of weight d and so d > w. �

Suppose that A = Fq, the finite field with q = ph elements, p prime. If

C is additive then λu ∈ C for all λ ∈ Fp, so C is a subspace over Fp. If C

has the additional property that λu ∈ C for all λ in Fq then we say C is

linear. A linear code of length n is a subspace of Fnq .

We use the notation (n,K, d)q code to denote a code over an alphabet

of size q of length n, size K and minimum distance d.

The notation [n, k, d]q code denotes a k-dimensional linear code over Fq
of length n and minimum distance d.

3.2. The geometry of linear codes. We will begin our geometrical study

of codes by considering linear codes over Fq.
Let G be a k×n matrix. We recall that when at is a row vector in Fkq , the

expression atG yields a linear combination of the rows of G. Likewise, when

b is a column vector in Fnq , the expression Gb yields a linear combination

of the columns of G.

Let C be a k-dimensional linear code over Fq of length n, in other words,

C is a k-dimensional subspace of Fnq . We describe C by a k × n matrix G

whose row space is C, i.e. the rows of G are a basis for C. Thus, for each

u ∈ C, there is an at = (a1, . . . , ak) ∈ Fkq such that

u = atG.

In other words, the generator matrix G acts as a linear encoding matrix

for the message a, yielding the codeword u ready to be sent over a noisy

channel.

The geometry of C is seen by considering the set of columns of the

generator matrix G. Let X be the set of columns of G, so X is a (possibly

multi-)set of n vectors of Fkq . The codeword u = atG has a zero in its i-th
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coordinate if and only if

a · z = a1z1 + · · ·+ akzk = 0

where z = (z1, . . . , zk) is the i-th column of G. This property is unaffected if

we replace z by a non-zero scalar multiple of z, so it is natural to consider X
as a (possibly multi-)set of n points of PG(k−1, q), the (k−1)-dimensional

projective space over Fq.
The projective space PG(k − 1, q) is obtained from the vector space Fkq

by identifying the vectors which are scalar multiples of each other. In this

way, the points of PG(k−1, q) are the one-dimensional subspaces of Fkq and,

more generally, the (i − 1)-dimensional subspaces of PG(k − 1, q) are the

i-dimensional subspaces of Fkq . The lines, planes and hyperplanes of PG(k−
1, q) are the 1-dimensional, 2-dimensional and co-dimension 1 subspaces,

respectively. Note that in PG(k − 1, q) familiar geometric properties hold.

For example, two points are joined by a line; the intersection of two planes

in a three-dimensional subspace is a line. If a point x is contained in a

subspace π we say that x is incident with π. If two subspaces π1 and

π2 have an empty intersection (i.e. their corresponding subspaces in Fkq
intersect in the zero vector), then we say that they are skew.

A set of points x1, . . . , xr of a projective space are independent if they

span an (r−1)-dimensional (projective) subspace. If they are not indepen-

dent then they are dependent.

The number of r-tuples of linearly independent vectors of Fkq is

(qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1).

Hence, the number of r-dimensional subspaces of Fkq is[
k

r

]
q

:=
(qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)
.

Thus, the number of points of PG(k − 1, q) is

qk − 1

q − 1
= qk−1 + qk−2 + · · ·+ q + 1.

There is a natural duality between the points of PG(k − 1, q) and

the hyperplanes of PG(k − 1, q). A point (a1, . . . , ak) is mapped to the

hyperplane defined as the kernel as the linear form

a1X1 + · · ·+ akXk.
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For example, the point (1,−1, 0) is mapped to the hyperplane X1−X2 = 0,

Thus, the number of hyperplanes of PG(k − 1, q) is also

qk−1 + qk−2 + · · ·+ q + 1,

which can be checked directly by calculating

[
k

k − 1

]
q

.

The number of lines of PG(3, q) is

(q4 − 1)(q3 − 1)

(q2 − 1)(q − 1)
= (q2 + 1)(q2 + q + 1).

The number of points in PG(k − 1, 2) is 2k − 1 and the number of lines

of PG(k − 1, 2) is (2k − 1)(2k−1 − 1)/3.

Lemma 3.2. The number of (r − 1)-dimensional subspaces of PG(k − 1, q)

containing a fixed (s− 1)-dimensional subspace is[
k − s
r − s

]
q

.

Proof. For any s-dimensional subspace U of Fkq , the quotient space Fkq/U is

a (k − s)-dimensional vector space. An r-dimensional subspace containing

U is a (r − s)-dimensional subspace in the quotient space. Thus, the

lemma holds, taking into account the dimension shift when considering

the projective space. �

The following theorem explains what the minimum distance d of a linear

code implies for the set of points X .

Theorem 3.3. An [n, k, d] linear code over Fq is equivalent to a (possibly

multi-)set of points X in PG(k−1, q) in which every hyperplane of PG(k−1, q)

contains at most n−d points of X and some hyperplane contains exactly n−d
points of X .

Proof. Let G be a k×n matrix whose row space is a [n, k, d] linear code C.

Let X be the set of columns of G viewed as points of PG(k − 1, q).

Recall that the codeword u = atG has a zero in its i-th coordinate if

and only if

a · z = a1z1 + · · ·+ akzk = 0

where z = (z1, . . . , zk) is the i-th column of G.
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The kernel of the linear form

a1X1 + · · ·+ akXk

defines a hyperplane πa of PG(k− 1, q). The codeword u = atG has weight

w if and only if u has exactly n − w zero coordinates. This is the case if

and only if πa is incident with n− w points of X .

By Lemma 3.1, the minimum distance of a linear code is equal to

its minimum weight. Hence, the maximum number of points of X on a

hyperplane of PG(k − 1, q) is n − d, where d is the minimum distance of

C. �

3.3. The geometry of additive codes. An additive code C over Fq is

linear over Fp, where q = ph for some prime p. Therefore, |C| = pr for some

r. The following theorem is the additive version of Theorem 3.3; the set of

points X is replaced by a set of subspaces.

Theorem 3.4. An (n, pr, d) additive code over Fq with q = ph is equivalent

to a (possibly multi-)set X of 6 (h−1)-dimensional subspaces in PG(r−1, p)

in which every hyperplane of PG(r − 1, p) contains at most n − d subspaces

of X and some hyperplane contains exactly n− d subspaces of X .

Proof. Let G be a r × n matrix which is a basis for C over Fp. As in the

case of linear codes, we consider the (possibly multi-)set X of columns of G.

However, we shouldn’t consider the elements of X as points of PG(r−1, q),

since we obtain C from G by taking the row span over Fp and not over Fq.
Thus, we consider the elements of X as subspaces of PG(r− 1, p). Suppose

that e ∈ Fq, is such that {1, e, e2, . . . , eh−1} is a basis for Fq over Fp. Then,

up to scalar factor, we can write x ∈ X as

h−1∑
j=0

ejxj ,

where xj ∈ Frp. We associate x with the subspace spanned by x0, . . . , xh−1
in PG(r − 1, p), which we denote by `x. The subspace `x has dimension at

most h− 1.

Suppose that x is the i-th column of G, so x ∈ X . The non-zero codeword

u = atG, where a ∈ Frp, has a zero in its i-th coordinate if and only if the

hyperplane of PG(r − 1, p), which is the kernel of linear form

a1X1 + · · ·+ arXr,
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contains the subspace `x. �

Observe that a linear code over Fq necessarily has size qk, so if we wish

to obtain an additive code with the same parameters as a linear code, then

r = kh for some k.

3.4. The geometry of qubit quantum codes. For the moment, we

restrict to the case q = 2 and consider the geometrical consequences of

Theorem 2.12, which describes the connection between stabilizer codes and

binary linear codes.

A qubit stabilizer code Q(S) is equivalent to a binary linear code

C = τ(S) of length 2n which is contained in its alternating dual C⊥a .

According to Theorem 2.12, the minimum distance of Q(S) is the minimum

symplectic weight of C⊥a\C.

Consider once again the Shor code from Example 1.2.

Example 3.5. (Shor code) Applying the map τ to the elements in Exam-

ple 1.2 we have that C = τ(S) is the F2 row span of the matrix

G(S) =



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0


.

Since there are two columns which are linearly dependent, there are ele-

ments of C⊥a of symplectic weight two; these are images under τ of Pauli

operators of Centraliser(S) of weight two.

To see this, recall that the alternating form is defined as

(u,w)a =
n∑
j=1

(ujwj+n − uj+nwj),

so the dependency of the first two columns implies that

(0, 0, 0, 0, 0, 0, 0, 0, 0 | 1, 1, 0, 0, 0, 0, 0, 0, 0)



32 S. Ball, A. Centelles and F. Huber

is an element of C⊥a . However, this element is an element of C, since it’s

the first row of the matrix. Recall that the minimum distance is equal

to the minimum symplectic weight of C⊥a \ C. Therefore, although C⊥a

contains elements of symplectic weight 2, the minimum symplectic weight

of C⊥a \ C is in fact 3. We will prove this in Example 3.9.

Given a subgroup S, generated by n−k commuting elementsM1, . . . ,Mn−k
of Pn, we obtain a set X of n lines or possibly points in PG(n − k − 1, 2)

in the following way. For each i ∈ {1, . . . , n}, we get a line (or a point)

by considering the span of the i-th and (i+ n)-th column of the generator

matrix G(S). Vice versa, given a set of n lines in PG(n − k − 1, 2), we

construct a (n − k) × 2n matrix, from which we obtain M1, . . . ,Mn−k by

applying τ−1 to the rows of the matrix.

On first sight it may seem that there is a certain amount of freedom

when we reconstruct the code from a given quantum set of lines. Each line

is incident with three points and we can choose which pair of points on the

line to use to construct the i-th and the (i+n)-th column of G. This choice

is equivalent to invoking a permutation of {σx, σy, σz} on the i-th position

of each of the M1, . . . ,Mn−k. This does not affect the property that these

elements pairwise commute, so we define all quantum codes that can be

obtained from each other in this way to be equivalent.

For example, in Example 2.14, invoking the permutation σ which takes

X → Z → Y → X on the Mi in the first, second and fourth positions gives

σ(M1) = Z Y I I Z

σ(M2) = Y Z Z I I

σ(M3) = I Y X Y I

σ(M4) = I I Z Z Z

σ(M5) = Y I I Y X

.

The matrix whose i-th row is τ(Mi) is


0 1 0 0 0 1 1 0 0 1

1 0 0 0 0 1 1 1 0 0

0 1 1 1 0 0 1 0 1 0

0 0 0 0 0 0 0 1 1 1

1 0 0 1 1 1 0 0 1 0
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Comparing this to the matrix

G(S) =


1 0 0 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 0 0 1 0


from Example 2.14, we see that the set of lines X remains unchanged.

There is also a choice between the scalar factor of M when we apply τ−1

to a row of the matrix G. We will always assume that this factor to be 1.

However, changing the sign of some of the generators of a subgroup S can

be useful, as we shall see in Section 4.

Lemma 3.6. The span of the i-th and (i + n)-th column of the generator

matrix G(S) is a line of PG(n − k − 1, 2) for all i = 1, . . . , n if and only if

the minimum non-zero weight of Centraliser(S) is at least two.

Proof. We fail to obtain a line of PG(n − k − 1, 2) if and only if the i-th

and (i + n)-th column of the matrix G(S) are either the same non-zero

vector or one or both of them is the zero vector. This implies that in the

i-th position of all the Pauli operators in S, there is either σ0 or a fixed

element σ ∈ {σx, σy, σz}. This occurs if and only if there is an element of

Centraliser(S) of weight 1. �

If Q(S) is pure then the condition that the minimum non-zero weight

of Centraliser(S) is at least 2 can be replaced by the condition that the

minimum distance of Q(S) is at least 2. However, this does not need

to hold for impure codes. Indeed it could be that there are elements of

Centraliser(S) ∩ S of weight one. Yet, if the stabilizer of a [[n, k, d]] code

Q(S) contains an element of weight one, then it is easy to see that one can

construct a [[n− 1, k, d]] stabilizer code by deleting that position.

We would like to give a geometrical interpretation of the fact that the

code C = τ(S) is contained in C⊥a .

Recall that we say two subspaces of PG(k− 1, q) are skew if they do not

intersect.

Theorem 3.7. The following are equivalent.

(1) There is a [[n, k, d]] stabilizer code Q(S), where S is a subgroup generated

by n − k independent commuting elements of Pn and whose centraliser

contains no element of weight one.
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(2) There is a set of n lines X spanning PG(n− k − 1, 2) with the property

that every co-dimension 2 subspace is skew to an even number of the

number of lines of X .

Proof. (1⇒ 2)

Let C = τ(S) and let G = G(S) be a (n− k)× 2n generator matrix for

C.

From Lemma 2.13, the matrix G has rank n − k. Thus, its columns

span PG(n− k− 1, 2).

Let X be the set of n lines obtained for i = 1, . . . , n as the span of the

i-th and (i+ n)-th column of G(S).

Let u,w ∈ C, so u = (a1, . . . , an−k)G and w = (b1, . . . , bn−k)G for some

a = (a1, . . . , an−k) ∈ Fn−k2 and b = (b1, . . . , bn−k) ∈ Fn−k2 .

One has C ⊆ C⊥a if and only if

(u,w)a =
n∑
j=1

(ujwn+j − wjun+j) = 0,

for all u,w ∈ C.

We want to deduce the geometrical meaning of (u,w)a = 0.

Consider a single term in the sum first. Let x and y be the j-th and the

(n+ j)-th column of G respectively. Then

ujwn+j − un+jwj = (a · x)(b · y)− (a · y)(b · x).

The right-hand side is zero if and only if the matrix(
a · x a · y
b · x b · y

)
has zero determinant, i.e. it has rank 1.

This is if and only if there exists λ, µ ∈ F2 such that

a · (λx+ µy) = 0

and

b · (λx+ µy) = 0.

Recall that we define πa as the hyperplane which is the kernel of the linear

form

a ·X = a1X1 + · · ·+ an−kXn−k.



Quantum error-correcting codes and their geometries 35

πa

λx+ µy
x

a line that is skew to πa ∩ πb

x′
y′

πb

`

y

πa ∩ πb (co-dimension 2)

Figure 1.

A point λx+ µy on the intersection of the hyperplanes πa and πb.

We can thus rewrite the above conditions as the requirement that the

point λx+µy is contained in both πa and πb. In other words, there is a point

on the line `, spanned by x and y, which is incident with the intersection

of the two hyperplanes πa and πb.

Returning to the condition (u, v)a = 0, we must therefore get an even

number of ones in the sum
n∑
j=1

(ujwn+j − un+jwj) .

All lines of X that are skew to πa ∩ πb = ker(a ·X) ∩ ker(b ·X) contribute;

for any given a and b there must in total be an even number of such lines.

We note that every co-dimension 2 subspace of PG(n− k − 1, 2) can be

realised in this way (as the intersection of some a ·X = 0 and b ·X = 0).

This proves the forward implication.

(1⇐ 2)

Let X be a set of lines spanning PG(n−k− 1, 2) with the property that

every co-dimension 2 subspace of PG(n−k−1, 2) is skew to an even number

of lines of X . Let G be the matrix whose i-th and (i + n)-th column are

points which span the i-th line of X . Let C be the code generated by G.

Since X spans PG(n− k − 1, 2), the code C is (n− k)-dimensional. As we

proved in the forward implication, the property that every co-dimension 2

subspace is skew to an even number of lines of X implies that for any two

codewords u and v of C, (u, v)a = 0 holds. By Lemma 2.10, the image

under τ−1 of C is an abelian subgroup S of Pn and by Lemma 2.13, it is

generated by n− k pairwise commuting elements of Pn. �
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Let X be a set of lines and let Θ(X ) be the space spanned by the lines

of X .

We say that X is a quantum set of lines if it has the property that every

co-dimension 2 subspace of Θ(X ) is skew to an even number of lines of X .

To deduce the minimum distance of the corresponding stabilizer code, we

introduce the parameter d(X ).

Recall that r points are independent if they span an (r− 1)-dimensional

subspace; they are dependent otherwise.

Consider first the case in which dim Θ(X ) 6= |X | − 1. By Theorem 3.7,

X will give a quantum [[n, k, d]] code with k 6= 0. We define the parameter

d(X ) as the minimum number of dependent points that can be found on

distinct lines of X ; not including the dependencies for which there is a

hyperplane of Θ(X ) which both

a) contains all the lines of X which do not contain the dependent points ,

b) contains all the dependent points.3

Thus, d(X ) = r, where r is minimal such that there exists a set of

dependent points {x1, . . . , xr}, where each xi is incident with a line `i ∈ X
and the lines `1, . . . , `r are distinct, but for which there is no hyperplane

containing the lines X \ {`1, . . . , `r} and the points {x1, . . . , xr}.
In the case in which dim Θ(X ) = |X | − 1, Theorem 3.7 implies that X

will give a quantum [[n, k, d]] code with k = 0. We define the parameter

d(X ) as the minimum d for which there is a hyperplane of Θ(X ) containing

|X | − d lines of X . Equivalently. it is the minimum number of dependent

points that can be found on distinct lines of X . This definition and the

equivalence will be justified in the proof of Theorem 3.8.

From now on we assume that the centraliser of the stabilizer S contains

no elements of weight one. By Lemma 3.6, this assumption guarantees

that there is a quantum set of lines associated with the stabilizer code. As

mentioned before, this is equivalent to assuming that the minimum distance

is at least 2 in the case of pure codes.

Theorem 3.8. There is a [[n, k, d]] stabilizer code if and only if there is a

quantum set of lines X for which d(X ) = d and Θ(X ) = PG(n− k − 1, 2).

Proof. We only have to prove the part about the minimum distance since

Theorem 3.7 covers the rest.

3 In the original definition of Glynn et al [7], the condition b) does not appear.
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(⇒) Let Q(S) be a [[n, k, d]] stabilizer code given by some stabilizer S.

Let C = τ(S).

As in the proof of Theorem 3.7, let G = G(S) be the (n − k) × 2n

generator matrix with entries from F2 whose row space forms the code C.

Define a set of lines

X = {`j | j = 1, . . . , n},

where `j is the line that corresponds to the span of the j-th and (j + n)-th

column of G.

Consider the case k 6= 0.

By Theorem 2.12, the parameter d is the minimum symplectic weight

of C⊥a \ C.

Suppose now that v ∈ C⊥a has symplectic weight w and let W denote

the set of positions that contribute to the weight,

W = {j ∈ {1, . . . , n} | (vj , vn+j) 6= (0, 0)}.

Clearly, |W | = w.

Denote by xj the j-th column of G. Since v = (v1, . . . , v2n) is in C⊥a ,

one has ∑
j∈W

(vn+jxj − xn+jvj) = 0. (3)

Each summand corresponds to some point of `j . Thus, there are w = |W |
points on distinct lines {`j | j ∈W} which are dependent.

However, since the minimum distance d is the minimum symplectic

weight of C⊥a \ C, we have to disregard this dependency if v ∈ C.

A vector v is in C if and only if v = aG for some a ∈ Fn−k2 . As a

consequence, vj = a · xj for all j = 1, . . . , 2n.

First, consider those positions j of v that do not contribute to its

symplectic weight, that is, j /∈ W . For each j /∈ W , one has that

vj = a · xj = 0 and vn+j = a · xn+j = 0 if and only if the line lj is

contained in the hyperplane πa described by a · X = 0. So the lines of

{`j | j ∈ {1, . . . , n} \W} are contained in πa.

Second, consider those positions j of v that contribute to its symplectic

weight, j ∈W . Then

a · (vn+jxj − xn+jvj) = vn+j(a · xj)− (a · xn+j)vj = vn+jvj − vn+jvj = 0,

since vj = a · xj and vn+j = a · xn+j . Hence, the dependent points are also

contained in the hyperplane a ·X = 0.
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This exactly coincides with our definition of d(X ).

Now, consider the case k = 0.

By Theorem 2.12, the parameter d is the minimum non-zero symplectic

weight of C.

Let v ∈ C be of minimum non-zero symplectic weight. Since v ∈ C,

v = aG for some a ∈ Fn−k2 . Thus, vj = a · xj for all j = 1, . . . , 2n.

Let W denote the set of positions that contribute to the symplectic

weight of v, i.e.

W = {j ∈ {1, . . . , n} | (vj , vn+j) 6= (0, 0)}.

Then, for j ∈ W , a · xj = a · xn+j = 0 which is equivalent to the line

`j ∈ X being contained in the hyperplane a ·X = 0. Therefore, there is a

hyperplane of Θ(X ) containing |X | − d lines of X which coincides with our

definition of d(X ) in this case.

Alternatively, since C = C⊥a , the parameter d is the minimum non-zero

symplectic weight of C⊥a . As in the case k 6= 0, a vector v = (v1, . . . , v2n) ∈
C⊥a of symplectic weight d, will give a dependency of d points of X , which

coincides with our alternative definition of d(X ) in this case.

(⇐) Vice-versa, suppose that X is a quantum set of lines for which

d(X ) = d and Θ(X ) = PG(n− k − 1, 2).

Let G = G(S) be the (n − k) × 2n generator matrix for a code C,

whose i-th and (i+ n)-th column span the i-th line of X . Let S = τ−1(C)

and let Q(S) be the stabiliser code. By Theorem 3.7 and the fact that

Θ(X ) = PG(n − k − 1, 2), Q(S) is a [[n, k, d]] stabilizer code for some d.

The fact that d = d(X ) follows from the same arguments as in the forward

implication, observing that if

a · (vn+jxj − xn+jvj) = 0

then

vn+j(a · xj)− (a · xn+j)vj = 0

which implies vj = a·xj and vn+j = a·xn+j , assuming (a·xj , a·xn+j) 6= (0, 0).

This is precisely the assumption that `j is not contained in the hyperplane

πa. �

Example 3.9. (Shor code) As we saw in Example 3.5, the Shor code has
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the generator matrix

G(S) =



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0


.

Let ei denote the i-th vector in the canonical basis of F8
2.

The quantum set of lines X is

{〈e1, e7〉, 〈e1 + e2, e7〉, 〈e2, e7〉, 〈e3, e7 + e8〉,

〈e3 + e4, e7 + e8〉, 〈e4, e7 + e8〉, 〈e5, e8〉, 〈e5 + e6, e8〉, 〈e6, e8〉}.
which is drawn in Figure 2. Here, 〈ei, ej〉 denotes the line spanned by points

ei and ej .

Note that the point e7 is on the two lines 〈e1, e7〉 and 〈e1 + e2, e7〉, and

thus e7 is “dependent with itself”. So at first sight it seems that d(X ) = 2.

However, the remaining seven lines span a six dimensional subspace since

the two planes 〈e3, e4, e7 + e8〉 and 〈e5, e6, e8〉 span a five dimensional sub-

space, while the line 〈e2, e7〉 extends this to a six dimensional subspace that

also contains the point e7 (i.e. contains all dependent points). Following

Theorem 3.8, we do not count this dependency and conclude that d(X ) > 3.

The dependency of e7 with itself implies that the Shor code is impure. The

dependent points {e1, e2, e1 + e2} imply that d(X ) = 3. Although the six

lines not containing these points are contained in a hyperplane, there is no

hyperplane containing the six lines and the dependent points, thus we do

not disregard this dependency. Thus, we see that condition b) is essential

in the definition of d(X ).

Let us generalize one feature of the Shor code further: a planar pencil

of lines in a projective space is a set of lines which are all contained in

some plane and are all the lines incident with a point in that plane. As

illustrated in Figure 2, the Shor code is the union of three planar pencils.

Observe that a planar pencil of lines is itself a quantum set of lines. Our

aim is to show that a quantum set of lines is nothing more than the union

modulo two of planar pencils of lines. We first prove a few lemmas.
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e7 + e8

e7 e8

e1
e1 + e2 e2

e3 e4e3 + e4

e5

e6
e5 + e6

Figure 2. The set of nine (thick) lines describing the geometry of the Shor code.

Lemma 3.10. The union modulo two of two quantum sets of lines is a

quantum set of lines.

Proof. Let X and Y be two quantum sets of lines. Recall that Θ(X ), Θ(Y),

and Θ(X ∪ Y) are the spaces spanned by X , Y, and both sets of lines

respectively. A co-dimension 2 subspace π intersects Θ(X ) in either a co-

dimension 2 subspace, in a hyperplane, or in Θ(X ). In the first case it is

skew to an even number of the lines of X ; in the latter two cases it is skew

to none (which is even).

Let X be the subset of X of lines skew to π. Likewise, let Y be the

subset of Y of lines skew to π. Then π is skew to |X |+ |Y| − 2|X ∩ Y| lines

of the union modulo two of X and Y.

Since both |X | and |Y| are even, every co-dimension 2 subspace is skew

to an even number of lines of X ∪ Y. This proves the lemma. �

An r-sputnik is a set of (r + 1) concurrent lines (they are all incident

with some point) in an r-dimensional subspace π with the property that

any r of them span π. In Figure 3 a 3-sputnik is illustrated.

Our aim will be to prove that a quantum set of lines is the union modulo

two of planar pencils of lines. Firstly we will prove that this claim is true

for an r-sputnik.
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Figure 3. A 3-sputnik looks quite like a Soviet radio satellite from 1957.

`

`′

Figure 4. A 3-sputnik seen as the union modulo two of two planar pencils of lines.

Lemma 3.11. An r-sputnik is the union modulo two of planar pencils of

lines. In particular, an r-sputnik is a quantum set of lines.

Proof. Let X be an r-sputnik and take any two lines ` and `′ ∈ X . The r−1

lines of X \ {`, `′} span a (r− 1)-dimensional subspace which intersects the

plane spanned by ` and `′ in a line `′′. The line `′′ is the third line in the

planar pencil of lines spanned by ` and `′. Thus, adding (modulo 2) this

pencil of lines to X we get an (r− 1)-sputnik. Now continue adding planar

pencils of lines in this way until we get a 2-sputnik. Since a 2-sputnik is

a planar pencil of lines, it is a quantum set of lines. We can then reverse

the process adding planar pencils of lines to recover the r-sputnik which,

by Lemma 3.10, is also a quantum set of lines. �

Lemma 3.12. Let X be a quantum set of lines. There is a set D of dependent

points such that each point of D is incident with a different line of X .

Proof. Let π = Θ(X ) be the subspace spanned by the lines of X and let

` ∈ X . Let π′ = Θ(X \{`}) be the subspace spanned by the lines of X \{`}.
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The subspace π′ is either a co-dimension 2 subspace of π, a hyperplane of

π, or π itself. The first case is ruled out since X is a quantum set of lines

and, by definition, any co-dimension 2 subspace is skew to an even number

of lines of X . Therefore, there is a point of x of ` incident with π′. Any

point of π′ is the sum of points incident with the lines of X \ {`}. Thus,

we obtain a set of dependent points each incident with a line of X . If in

this set there are two points y and z incident with same line `′ of X , then

we can replace y and z by `′ \ {y, z}. Hence, we obtain a set of dependent

points each incident with a distinct line of X . �

Lemma 3.13. A quantum set of three lines is a planar pencil of lines.

Proof. Suppose that the quantum set of three lines X = {`1, `2, `3} span

PG(4, 2) or PG(5, 2) respectively. Then there is a point x ∈ `2 such that

the co-dimension 2 subspace spanned by `1 and x (resp. `1 and `2) is skew

to `3. This contradicts the definition of a quantum set of lines.

Suppose that the quantum set of three lines X = {`1, `2, `3} span

PG(3, 2). If `1 and `2 intersect then the co-dimension 2 subspace `1 (and

also `2) must also intersect `3. Since they span PG(3, 2) the three lines

must be concurrent (and not co-planar). Taking the union modulo 2 of the

planar pencil of lines spanned by `2 and `3 we obtain, by Lemma 3.10, a

quantum set of two lines, which does not exist. Thus we have three pairwise

skew lines `1, `2, `3 with the property that any line incident with two of

them is incident with the third. This implies there are nine lines which are

all incident with exactly one point of each of `1, `2, `3, see Figure 5. By

Lemma 3.2, a point of PG(3, 2) is incident with seven lines of PG(3, 2), so

in all we have that there are (at least)

9(7− 4) + 3 + 9 = 39

lines of PG(3, 2), when in fact, by Lemma 3.2, there are 35.

Therefore, the quantum set of three lines span a PG(2, 2). A co-

dimension 2 subspace is just a point, so a quantum set of lines must be

incident with every point of the plane. Hence, X is a planar pencil of

lines. �

The following theorem is due to Glynn, Gulliver, Maks and Gupta [7]. It

is important to note that if the qubit stabilizer code has minimum distance

2 then it is possible that the quantum set of lines X contains repeated lines.

This occurs, for example, in the [[5, 2, 2]] code.
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Figure 5. Configuration of the lines in PG(3, 2).

Theorem 3.14. A qubit stabilizer code with minimum distance at least three

is equivalent to a quantum set of lines which is generated by the union modulo

two of planar pencils of lines.

Proof. Let X be a quantum set of lines. We will prove that there is an r-

sputnik X ′ such that the union modulo 2 of X , X ′ and r− 1 planar pencils

of lines is a quantum set of |X | − 1 lines. Since, by Lemma 3.11, X ′ is the

union modulo 2 of planar pencils of lines, this implies that, by iteration,

we can take the union modulo 2 of X and some planar pencils of lines and

obtain a quantum set of three lines, by Lemma 3.10. By Lemma 3.13, this

set of three lines is a planar pencil of lines and we are done.

By Lemma 3.12, there is a set x1, . . . , xr+1 of minimally dependent points

incident with the lines `1, . . . , `r+1 of X , respectively. Let x ∈ `r+1 \{xr+1}.
Let `′j be the line spanned by the points x and xj , for j = 1, . . . , r. Let X ′
be the r-sputnik,

X ′ = {`′j | j = 1, . . . , r} ∪ {`r+1}.

Let Lj be the planar pencil of lines spanned by `j and `′j . In Figure 6,

r = 5, the lines `j are the thick lines, the `′j are the medium thickness lines

and the thin lines are the third line in the planar pencil of lines spanned

by `j and `′j .

By Lemma 3.10, the union modulo two of

(∪rj=1Lj) ∪ X ∪ X ′

is a quantum set of lines and, on inspection, it is a set of |X | − 1 lines. �
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x6 x1

x2 x3x4

x5

x

Figure 6. The thick lines are in X , the medium-thick lines are in X ′ and the thin lines

make up the planar pencils at each point x1, . . . , xr.

Example 3.15. Consider again the [[5, 0, 3]] code constructed in Exam-

ple 2.14. As a quantum set of lines X , this is the union modulo two of

pencils of lines drawn in Figure 7.

Since k = 0, d(X ) is the minimum d for which there is a hyperplane of

PG(4, q) containing |X | − d = 5 − d lines of X . Since any three lines span

the whole space, we have that d = 3. Thus, this is a [[5, 0, 3]] code.

We can also construct the [[5, 1, 3]] code from Figure 7. We only have to

replace e5 with e1 + e2 + e3 + e4 and check that the five (thick) lines are

then pairwise skew. This can be done by writing down the 15 points and

checking we get every point of PG(3, 2). Then, since any two of the thick

lines are pairwise skew, we have that the minimum distance is 3.

Example 3.16. The [[6, 0, 4]] code is the sum modulo 2 of 16 planar pencils

of lines, see Figure 8. The cyclic structure allows one to check quickly that

there are no three collinear points intersecting distinct lines of the six lines

of the quantum set of lines. Indeed, the points of weight two obtained by

summing two points incident with the quantum lines are cyclic shifts of

26, 36, 46 and the points of weight three obtained by summing two points

incident with the quantum lines are cyclic shifts of 134 and 146. Therefore,

the minimum distance of the code is at least 4. The points e126, e34, e16, e234
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e1

e2

e3e4

e5
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e2 + e4e3 + e5

e1 + e4

e2 + e5

Figure 7. The [[5, 0, 3]] code as the union modulo two of planar pencils of lines.

are four dependent points, implying that the minimum distance of the code

is 4.

Research Problem 1. The parameters [[14, 3, 5]] are the smallest for which

it is unknown whether there exists a qubit stabilizer code or not [10]. To

construct such a code one should look for a union modulo two of planar pencils

of lines that give 14 lines in PG(10, 2), such that any four points on 4 of the

14 lines that also lie on a common plane, the remaining 10 lines are contained

in a hyperplane which also contains those four dependent points.

Theorem 3.14 can also be used to rule out the existence of quantum

codes with certain parameters sets. For example, were a [[4, 0, 3]] stabilizer

code to exist then X would be a set of four skew lines in PG(3, 2) with the

property that any line is skew to an even number of lines of X . However,

the lines of X themselves are skew to the other three lines of X , which

is an odd number. A more interesting exercise is to prove that a [[7, 0, 4]]

code does not exist. To prove this, show that there are at least five three

dimensional subspaces which intersect all of the 7 lines of PG(6, 2) in the

quantum set of lines and prove that these pairwise intersect in a point.
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Figure 8. The quantum set of lines (the thicker lines) giving a [[6, 0, 4]] code.

4. Non-additive qubit quantum codes

4.1. Direct sum of stabilizer codes. As discussed in the previous

sections, a stabilizer code is defined as the common (+1)-eigenspace of

an independent set of pairwise commuting Pauli operators M1, . . . ,Mn−k;

this is the generator of the code. In other words, these codes are completely

characterized by an abelian subgroup S = 〈M1, . . . ,Mn−k〉 ⊂ Pn. The aim

of this section is to construct quantum codes that are the direct sum of

stabilizer codes. Technically speaking, any subspace can be regarded as

a quantum code, and naturally we want to make sure to obtain a large

mininum distance when taking this direct sum of subspaces. Thus, we

seek for some additional structure amongst them. While each individual

subspace will again be defined by a set of generators M1, . . . ,Mn−k, we will

now not simply take the joint eigenspace with eigenvalue 1 as our code

space.

We have already observed that to avoid constructing a trivial code, one

restricts the stabilizer not to contain a non-trivial multiple of the identity,

−1 6∈ S. This implies that each generator can only have an overall phase

of +1 or −1 and they are of the form

Mj = ±σ1 ⊗ · · · ⊗ σn
for some σ1, . . . , σn ∈ P1. Now observe that when M1, . . . ,Mn−k commute,
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then so do

±M1, . . . ,±Mn−k .

Thus for all t = (t1, . . . , tn−k) ∈ {0, 1}n−k, one can define a corresponding

stabilizer code Q(St) as the joint (+1)-eigenspace of

(−1)t1M1, . . . , (−1)tn−kMn−k.

For distinct t and t′ ∈ T , there is a j such that tj 6= t′j . Without loss of

generality, suppose that tj = 1. For all |v〉 ∈ Q(St) and |w〉 ∈ Q(St′), one

has 〈v|w〉 = 〈v|Mjw〉 = 〈Mjv|w〉 = −〈v|w〉 = 0. Consequently, Q(St) and

Q(St′) are orthogonal.

For any T ⊂ {0, 1}m, we define a direct sum stabilizer code (confusingly

also known as a union stabilizer code) as

Q(ST ) =
⊕
t∈T

Q(St).

To be able to determine the minimum distance of this quantum code,

we first determine the errors which are not detectable.

As before, let G be the generator matrix whose row space is C = τ(S).

Let t, u ∈ T \ {0} and let At,u be a (n− k)× (n− k) non-singular matrix

whose first two columns are t and u. Then A−1t,uG is also a generator matrix

for C and we can find another set

{M ′i |i = 1, . . . , n− k}

of generators of S, where M ′i is obtained from the i-th row of A−1t,uG by

applying τ−1, in other words reversing the construction above.

Let St,u be the subgroup of S generated by M ′3, . . . ,M
′
n−k.

Lemma 4.1. Suppose |ψt〉 ∈ Qt(S) and |ψu〉 ∈ Qu(S). Then, for all

M ∈ St,u,

M
∣∣ψt〉 =

∣∣ψt〉 and M |ψu〉 = |ψu〉 .

Proof. Observe that Qt(S) depends on the set of generators we have

chosen for S. If we use the set of generators M ′1, . . . ,M
′
n−k for S then

Qt(S) becomes Q(1,0,0,...,0)(S) and Qu(S) becomes Q(0,1,0,...,0)(S). Thus,

M ′j |ψt〉 = |ψt〉 and M ′j |ψu〉 = |ψu〉 for all j ∈ {3, . . . , n− k}. �

.
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Lemma 4.2. Suppose Q(ST ) is unable to detect an error E. Then there is a

pair t, u ∈ T such that E ∈ Centraliser(St,u).

Proof. Suppose there is no such pair. Then, for all t, u ∈ T , there is a

Mt,u ∈ St,u for which E anti-commutes with Mt,u.

Suppose |ψt〉 ∈ Qt(S) and |ψu〉 ∈ Qu(S) are in an orthogonal basis for

Q(ST ). By Lemma 4.1,

Mt,u

∣∣ψt〉 =
∣∣ψt〉 and Mt,u |ψu〉 = |ψu〉

and so〈
ψt
∣∣E |ψu〉 =

〈
ψt
∣∣EMt,u |ψu〉 = −

〈
ψt
∣∣Mt,uE |ψu〉 = −

〈
ψt
∣∣E |ψu〉 .

Hence, 〈
ψt
∣∣E |ψu〉 = 0

and by Theorem 1.5, E is detectable. �

Thus, according to Lemma 4.2, we only need concern ourselves with the

errors which are in Centraliser(St,u) for any t, u ∈ T .

This motivates the definition

dT = min{dt,u | t, u ∈ T} (4)

where dt,u is the minimum weight of a Pauli operator in Centralise(St,u).

Theorem 4.3. The subspace Q(ST ) is an ((n, |T |2k, dT )) quantum code.

Proof. If E is undetectable then it is an element of Centraliser(St,u) for

some t, u ∈ T . �

4.2. The Rains, Hardin, Shor, Sloane non-additive quantum code.

This code first appeared in [17], although the geometric observation given

here appears to be new.

Example 4.4. (Rains, Hardin, Shor, Sloane) Consider the following ele-

ments of P5.
M1 = Z X Y Y X

M2 = X Z X Y Y

M3 = Y X Z X Y

M4 = Y Y X Z X

M5 = X Y Y X Z
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The corresponding matrix whose i-th row is τ(Mi) is
0 1 1 1 1 1 0 1 1 0

1 0 1 1 1 0 1 0 1 1

1 1 0 1 1 1 0 1 0 1

1 1 1 0 1 1 1 0 1 0

1 1 1 1 0 0 1 1 0 1

 .

Observe that deleting any two rows of this matrix we obtain a 3×10 matrix

whose 5 pairs of columns define a quantum set of lines in PG(2, 2). This

quantum set of lines defines a stabilizer code whose minimum distance is

2. Therefore, if we set

T = {∅, {1}, {2}, {3}, {4}, {5}}
then, by Theorem 4.3, Q(ST ) is a ((5, 6, 2)) quantum code.

4.3. The geometry of direct sum stabilizer codes. Suppose that we

restrict our choice of elements of T to singleton subsets and the empty set,

as in Example 4.4. Let X be the quantum set of lines of PG(n − k − 1, 2)

associated with the [[n, k, d]] quantum stabilizer code Q(S), where S is

the subgroup generated by M1, . . . ,Mn−k. Let P = {e1, . . . , er} be a set

of linearly independent points of PG(n − k − 1, 2), chosen so that the

projection from any two points ei, ej ∈ P of the lines of X is a set of lines

of PG(n− k − 3, 2). If this projection is a set of lines then it is necessarily

a quantum set of lines, which we denote by Xij . The mini

The parameter d(Xij) is the size of the smallest set of dependent points

incident with distinct lines of Xij . Thus, the definition in (4) will be

dT = min{d(Xij) | i, j ∈ {1, . . . , r}}.
Hence, we have a purely geometric way to construct direct sum stabilizer

codes with parameters ((n, (r + 1)2k, dT )), for some r 6 n− k.

This is taken much further in [4], where the geometrical construction is

generalised to prime alphabets.

Research Problem 2. Find quantum sets of lines X for which there are

points with the property that the projection of the lines of X from any pair

is onto a quantum set of lines X ′ with relatively large d(X ′). It should be

possible to make direct sum stabilizer codes with good parameters from this

geometrical construction. It would be of great interest if one could construct

codes with parameters for which stabilizer codes could feasibly exist but none

are known to exist.
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5. Stabilizer codes for larger alphabets

5.1. The higher-dimensional Pauli group. When a quantum system

has D levels we speak of a quDit. In this section, we will consider quantum

codes over such larger subsystems. Consequently, these codes are subspaces

of the Hilbert space (CD)⊗n.

We will consider (Cq)⊗n, where q = ph, is the power of a prime p. The

restriction to prime powers allows us to use the structure of the finite field

for their construction. In the case when D is not a prime power, one can

use the ring Z/DZ, but then most of the constructions that we will consider

here will not work.

We label the coordinates of Cq with elements of Fq, where Fq denotes

the finite field with q elements. In this way, a basis for the space of

endomorphisms of Cq can be indexed by the elements of Fq × Fq.
For each a ∈ Fq, we define a q × q matrix X(a) to be matrix obtained

from from the linear map which permutes the coordinates of Cq by adding

a to the index.

In other words, with basis {|x〉 | x ∈ Fq} of C,

X(a) |x〉 = |x+ a〉 .
For example, if q = 3 and the elements of Fq are {0, 1, 2} then

X(0) =

 1 0 0

0 1 0

0 0 1

 , X(1) =

 0 0 1

1 0 0

0 1 0

 and X(2) =

 0 1 0

0 0 1

1 0 0

 .

For each b ∈ Fq, we define a q× q matrix Z(b) to be the diagonal matrix

whose i-th diagonal entry is wtr(ib). Here, w = e2πi/p is a primitive p-th

root of unity and tr is the trace map from Fq to its prime subfield Fp,

tr(a) =
h−1∑
j=0

ap
j

.

As in the previous case, if we take say q = 3 then

Z(0) =

 1 0 0

0 1 0

0 0 1

 , Z(1) =

 1 0 0

0 ω 0

0 0 ω2

 and Z(2) =

 1 0 0

0 ω2 0

0 0 ω

 ,

where ω is a primitive complex third root of unity. Recall, that the rows

and columns of the matrix are indexed by elements of Fq, so i ∈ Fq. Thus,

Z(b) |x〉 = ωtr(xb) |x〉 .
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We define the Pauli group for q odd as

P1 = {ωcX(a)Z(b) | a, b ∈ Fq, c ∈ Z/pZ}

and for q even, that is when p = 2, as

P1 = {ifωcX(a)Z(b) | a, b ∈ Fq, c ∈ Z/2Z, f ∈ Z/2Z}.

The reason that we accommodate this slightly larger group for q even is

due to Lemma 5.2 below. One can check that this definition coincides with

our definition of the Pauli group for q = 2.

More generally, we define the group of Pauli operators on (Cq)⊗n to be

the n-fold direct product Pn = P1 × · · · × P1 (n times). Thus

Pn = { σ1 ⊗ · · · ⊗ σn | σj ∈ P1}.
The size of Pn is pq2n for q odd and 4q2n for q even.

The weight of an element cσ1 ⊗ · · · ⊗ σn, where σi = X(ai)Z(bi), is the

number of i ∈ {1, . . . , n} such that σi 6= X(0)Z(0).

Lemma 5.1. For all a, b ∈ Fnq ,

ωtr(a·b)X(a)Z(b) = Z(b)X(a).

Proof. We have

X(a)Z(b) |x〉 = ωtr(b·x)X(a) |x〉 = ωtr(b·x) |x+ a〉 .

Meanwhile,

Z(b)X(a) |x〉 = Z(b) |x+ a〉 = ωtr(b·(x+a)) |x+ a〉 .

�

The following lemma implies that non-identity elements of the Pauli

group have order p, for q odd. Note that for q even this is not the case;

there are elements of order four. However, we extend the Pauli group as

above (defining σy = iσxσz) and in this way we introduce more elements of

order two. We do this so that we have more options for Mi in our set of

pairwise commuting operators which will generate the abelian subgroup S.
4

4 This was overlooked in the seminal paper of Ketkar et. al. [14] on stabilizer codes over

finite fields. They do not accommodate the larger Pauli group when q is even, or include

any version of Lemma 5.2. However, this larger group is necessary for all the examples of

qubit stabiliser codes we have included here.
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Lemma 5.2. For all a, b ∈ Fnq and r ∈ N,

(X(a)Z(b))r = ω(r
2)tr(a·b)X(a)rZ(b)r.

Proof. By induction on r, we have

(X(a)Z(b))r = (X(a)Z(b))r−1X(a)Z(b)

= ω(r−1
2 )tr(a·b)X(a)r−1Z(b)r−1X(a)Z(b).

By Lemma 5.1, this is equal to

ω(r−1
2 )tr(a·b)X(a)r−1ω(r−1)tr(a·b)X(a)Z(b)r−1Z(b) = ω(r

2)tr(a·b)X(a)rZ(b)r.

�

As in the case of qubit codes, we will again be looking to construct

stabilizer codes and for this reason it will be of interest to know when

elements M,N ∈ Pn commute or not. For this reason the following lemma

is fundamental.

Lemma 5.3. For all a, b, a′, b′ ∈ Fnq ,

X(a)Z(b)X(a′)Z(b′) = ωtr(a′·b−b·a′)X(a′)Z(b′)X(a)Z(b).

Proof. X(a) and X(a′) commute, likewise Z(b) and Z(b′), so the lemma

follows from Lemma 5.1. �

5.2. Error detection and correction. As in the case of qubit codes

it suffices to consider errors from the group Pn of Pauli-errors which are

unitary operators of the form

E = σ1 ⊗ · · · ⊗ σn

where σi = X(a)Z(b), for some a, b ∈ Fq.
Let Q be a quantum error correcting code of (Cq)⊗n, i.e. a subspace of

(Cq)⊗n.

Then again, as in the case of qubit codes, Q detects an error E ∈ P if

for all |φ〉 , |ψ〉 ∈ Q with 〈φ|ψ〉 = 0, we have that

〈φ|E |ψ〉 = 0 ,

and

〈φ|E |φ〉 = cE ,
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for some constant cE which depends only on E.

A quantum code Q has minimum distance d if one can detect Pauli-

errors with up to d− 1 non-identity matrices and correct Pauli-errors with

up to bd−12 c non-identity matrices.

We say that a quantum code of (Cq)⊗n of dimension K and minimum

distance d is a ((n,K, d))q code. If the code has dimension K = qk then we

say that the code is a [[n,K, d]]q code. Note that some authors reserve the

latter notation [[n,K, d]]q for stabilizer codes only.

5.3. Stabilizer codes. A stabilizer code is the intersection of the eigenspaces

with eigenvalue one of the elements of an abelian subgroup S of Pn. As

before, we denote the code by Q(S). We insist that λ1 6∈ S whenever λ 6= 1,

since otherwise Q(S) is trivial.

As in the qubit case, a stabilizer code Q(S) with stabilizer S can detect

all Pauli-errors that are scalar multiples of elements in S or that do not

commute with some element of S. We denote by Centraliser(S), the

elements of Pn that commute with all elements of S. A non-detectable

Pauli-error must be in Centraliser(S).

Commuting elements are characterised as follows.

By Lemma 5.3, two elements M = ωcX(a)Z(b) and N = ωc
′
X(a′)Z(b′)

satisfy

MN = ωtr(b·a′−b′·a)MN.

Therefore, M and N commute if and only if the trace symplectic form

tr(b · a′ − b′ · a) (5)

is zero.

As in the case for qubit codes, we introduce the map τ which maps

elements of Pn to F2n
q by

τ(X(a)Z(b)) = (a|b).

For elements u,w ∈ F2n
q , the trace symplectic form is

(u,w)a =
n∑
j=1

tr(ujwj+n − wjuj+n). (6)

Then with u = (a|b) and w = (a′|b′), this is the trace symplectic form (5).
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5.4. Stabiliser codes as additive codes over Fq. Let τ be the map that

maps cX(a)Z(b) to (a|b) ∈ F2n
q .

The group S is mapped to an additive code C = τ(S). The symplectic

weight of (a|b) ∈ F2n
q is the number of i ∈ {1, . . . , n} such that (ai, bi) 6=

(0, 0). Thus, an element cX(a)Z(b) of weight w is mapped to a vector of

symplectic weight w.

The elements of Centraliser(S) are mapped to the dual code of C, namely

C⊥a = {w ∈ F2n
q | (u,w)a = 0, for all u ∈ C} .

Here the dual ⊥a is taken with respect to the trace symplectic form (6).

We have the following important theorem.

Theorem 5.4. An ((n,K, d))q stabilizer code exists if and only if there exists

an additive code C 6 F2n
q of size |C| = qn/K such that C 6 C⊥a . If K 6= 1

then d is the minimum symplectic weight of an element of C⊥a \C, otherwise

d is the minimum symplectic weight of an element of C⊥a = C.

Proof. Let S be an abelian subgroup of Pn not containing non-trivial mul-

tiples of the identity. Let Q(S) be the corresponding ((n,K, d))q stabilizer

code and let

P =
1

|S|
∑
M∈S

M.

Then, as in Lemma 2.3, P is the orthogonal projection onto Q(S). For any

element M = X(a)Z(b) we have that M†M = 1, so M ∈ S if and only if

M† ∈ S. Hence, P † = P .

Thus, since P is Hermitian and P 2 = P , the dimension of its image Q(S)

is equal to the trace of P . Since tr(M) = 0 for all M ∈ Pn, M 6= 1 and

tr(1) = qn, one has tr(P ) = qn/|S| and so |S| = qn/K, since dimQ(S) = K.

We note that C = τ(S) is an additive code since S is an abelian subgroup

and has size |S| = qn/K. Since τ(Centraliser(S)) = C⊥a , we have C 6 C⊥a .

For K 6= 1, the minimum symplectic weight of any element of C⊥a \ C
is d, since the minimum distance of Q(S) is the minimum weight of the

Pauli operators in Centraliser(S) \ S. As in the qubit case, if K = 1 then

we define the minimum distance of Q(S) to be the minimum weight of

the Pauli operators in Centraliser(S) = S, which is equal to the minimum

symplectic weight of any element of C⊥a = C

The backwards implication is similar. Let S = τ−1(C) and define the

stabilizer code to be Q(S). Then the dimension follows as above. If K 6= 1

then the minimum distance of Q(S) corresponds as above to the minimum



Quantum error-correcting codes and their geometries 55

symplectic weight of an element of C⊥a \ C, since Centraliser(S) is equal

to τ−1(C⊥a) up to a scalar factor. If K = 1 then the minimum distance

of Q(S) corresponds to the minimum non-zero symplectic weight of the

elements of C⊥a = C. �

5.5. Constructions. The following theorem is known as the Calderbank-

Shor-Steane construction. The ⊥ refers to the standard inner product on

Fnq given by

u · v = u1v1 + · · ·unvn.

Theorem 5.5. Suppose there are linear codes C1 and C2 with parameters

[n, k1, d1]q and [n, k2, d2]q, with the property that C⊥1 6 C2. Then there is a

[[n, k1 + k2 − n, d]]q code, where d is the minimum weight of the elements in

(C1 \ C⊥2 ) ∪ (C2 \ C⊥1 ) if k1 + k2 6= n and d is the minimum non-zero weight

of the elements in C1 ∪ C2 if k1 + k2 = n.

Proof. Let C = C⊥1 × C⊥2 6 F2n
q . Then C is a linear code over Fq and for

all v = (v1|v2) and w = (w1|w2) in C,

(v, w)a = tr(v1 · w2 − v2 · w1) = tr(0− 0) = 0 .

In the above the first term vanishes since v1 ∈ C⊥1 6 C2 and w2 ∈ C⊥2 .

Likewise, the second term vanishes since v2 ∈ C⊥2 and w1 ∈ C⊥1 6 C2.

Hence, C 6 C⊥a and Theorem 5.4 applies.

To determine the minimum distance first note that C⊥a > C2×C1, since

for all v = (v1|v2) ∈ C⊥1 × C⊥2 and w = (w2|w1) ∈ C2 × C1,

(v, w)a = tr(v1 · w1 − v2 · w2) = tr(0− 0) = 0.

The dimension of C2×C1 is k1 + k2 and the dimension of C⊥a is 2n− (n−
k1)− (n− k2) = k1 + k2, so

C⊥a = C2 × C1.

Thus, by Theorem 5.4, if k1 + k2 6= n then the minimum distance of

the stabilizer code τ−1(C) is the minimum weight of the elements in

(C1 \ C⊥2 ) ∪ (C2 \ C⊥1 ). If k1 + k2 = n then the minimum distance of

the stabilizer code τ−1(C) is the minimum non-zero weight of the elements

in C2 × C1 = C⊥1 × C⊥2 , which is equal to the minimum non-zero weight of

the elements in C1 ∪ C2 = C⊥1 ∪ C⊥2 . �
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Example 5.6. The ternary extended Golay code C1 is a [12, 6, 6]3 code for

which C1 = C⊥1 . Applying Theorem 5.5, this implies there is a [[12, 0, 6]]3
quantum stabilizer code.

The code C1 has a generator matrix

G =



1 0 2 1 2 2 0 0 0 0 0 1

0 1 0 2 1 2 2 0 0 0 0 1

0 0 1 0 2 1 2 2 0 0 0 1

0 0 0 1 0 2 1 2 2 0 0 1

0 0 0 0 1 0 2 1 2 2 0 1

0 0 0 0 0 1 0 2 1 2 2 1


so C = C1 × C1 has generator matrix, a 12× 24 matrix(

0 G

G 0

)
.

The 12 Pauli operators generating the stabilizer group S are

Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 1 1 Z(1)

1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 1 Z(1)

1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 Z(1)

1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 Z(1)

1 1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 Z(1)

1 1 1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) Z(1)

X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 1 1 X(1)

1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 1 X(1)

1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 X(1)

1 1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 X(1)

1 1 1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 X(1)

1 1 1 1 1 X(1) 1 X(2) X(1) X(2) X(2) X(1)



.

The next construction is called the Fq2 trick (for qubit codes this is the

F4 trick). It’s not really a trick at all but it is a quick and effective way to

construct quantum codes. These codes are a very special type of stabilizer

code in which we impose more structure on the additive code C.

For any two vectors u, v in Fnq2 , we define the Hermitian form

u ◦ v = uq · v (7)

and for a Fq2-linear code E we define

E⊥h = {u ∈ Fnq2 | u ◦ v = 0, for all v ∈ E}.
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Theorem 5.7. If there exists a linear [n, n − k, d]q2 code D for which

D⊥h 6 D then there is a [[n, n− 2k,> d]]q stabilizer code.

Proof. The code D⊥h is a [n, k, d′]q2 code for some d′.

Fix a basis {e, eq} for Fq2 over Fq, where e2q 6= e2.

Let θ be the map from Fnq2 to F2n
q defined by

θ((a1e+ b1e
q, . . . , ane+ bne

q)) = (a1, . . . an|b1, . . . , bn)

Let C = θ(D⊥h), a 2k-dimensional linear code over Fq of length 2n.

For u ∈ D⊥h and u′ ∈ D,

0 = uq · u′ =
n∑
i=1

(aie+ bie
q)q(a′ie+ b′ie

q).

This implies

0 =
n∑
i=1

(a′ibie
2 + b′iaie

2q + (aia
′
i + bib

′
i)e

q+1).

Applying the x 7→ xq map, we get

0 =
n∑
i=1

(a′ibie
2q + b′iaie

2 + (aia
′
i + bib

′
i)e

q+1).

Subtracting the last two equations,

0 = (e2q − e2)
n∑
i=1

(aib
′
i − bia′i).

Hence,

(θ(u), θ(u′))a = 0,

and so θ(D) 6 C⊥a . Since |D| = |C⊥a | = q2(n−k), we have that θ(D) = C⊥a .

Moreover, C = θ(D⊥h) and D⊥h 6 D, so C 6 C⊥a . The symplectic

weight of an element of θ(u) is equal to the weight of u, so the minimum

symplectic weight of C⊥a \ C is the minimum weight of D \D⊥h .

The theorem follows from Theorem 5.4. �

We will use the construction of Theorem 5.7 to obtain quantum MDS

codes in the next section.

Research Problem 3. If k is small enough one can multiply the columns of

a generator matrix for D⊥h with non-zero scalars to obtain an equivalent

code for which D⊥h 6 D holds. It would be interesting to calculate the

combinatorial threshold for codes when this can always be done and then

deduce properties of codes which surpass this threshold.
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5.6. The geometry of quqit codes. In the case q = ph, Theorem 5.4

implies that the existence of a ((n, qn/pr, d))q stabilizer code Q(S) is equiv-

alent to the existence of an additive code C 6 C⊥a of length 2n, such that

C is generated by r vectors of F2n
q that are linearly independent over Fp.

Thus, the code C is generated by a r × 2n matrix G(S) over Fp and its

columns are vectors in Frq. We have seen in Section 3.3 that when h > 1,

we should consider those columns as subspaces of PG(r − 1, p) and not as

points of PG(r − 1, q).

Let xi be the i-th column of the matrix G(S) and let e be an element of

Fq with the property that {1, e, e2, . . . , eh−1} is a basis for Fq over Fp.
Then there are vector xi,j ∈ Frp such that

xi =
h−1∑
j=0

xi,je
j .

Let `i be the subspace

`i = 〈xi,0, . . . , xi,h−1, xi+n,0, . . . , xi+n,h−1〉, (8)

as a subspace of PG(r − 1, p).

The following lemma can be considered as a generalisation of Lemma 3.6

Lemma 5.8. The subspace `i is a (2h − 1)-dimensional subspace for all

i = 1, . . . , n if and only if the minimum non-zero weight of Centraliser(S)

is at least two.

Proof. Suppose that `i is a (2h−1)-dimensional subspace for all i = 1, . . . , n

and that E ∈ Centraliser(S) has weight one. Suppose that E has a

X(a)Z(b) 6= X(0)Z(0) in its i-th position, Consider any M ∈ S and suppose

that in the i-th coordinate M has the Pauli matrix X(a′)(Z(b′). Since M

and E commute,

tr(a′b− b′a) = 0.

Thus, (a′, b′) is in the kernel of the linear (over Fp) form

tr(bX − aY ).

The kernel of a linear form is a hyperplane of PG(2h − 1, p), so `i has

dimension at most 2h− 2, a contradiction.

Suppose that the minimum non-zero weight of Centraliser(S) is at least

two and that `i is not a (2h−1)-dimensional subspace for some i = 1, . . . , n.
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Since `i does not span the whole of PG(2h − 1, p), there is an element

(a, b) ∈ F2
q such that

tr(a′b− b′a) = 0,

for all X(a′)Z(b′) occurring in the i-th position of some M ∈ S. This

implies that the Pauli operator of weight one E with a X(a)Z(b) commutes

with all M ∈ S, contradicting the fact that the minimum non-zero weight

of Centraliser(S) is at least two. �

Thus, by Lemma 5.8, the geometry of the stabilizer code Q(S) for which

the minimum non-zero weight of Centraliser(S) is at least two, is given by

a set X of (2h − 1)-dimensional subspaces of PG(r − 1, p) of size n. The

following lemma allows us to deduce the minimum distance of Q(S), at

least in the case that Q(S) is pure.

Lemma 5.9. There are w dependent points incident with distinct subspaces

of X if and only if there is an element of Centraliser(S) of weight w.

Proof. Suppose that there is an element in Centraliser(S) of weight w. Then

the image under τ of this element is a vector v ∈ C⊥a with symplectic weight

w. Let D be the support of v restricted to the first n coordinates. As before,

let xi be the i-th column of the matrix G(S) and define xij as in (8). Since

v ∈ C⊥a , ∑
i∈D

tr(vi+nxi − xi+nvi) = 0.

This implies ∑
i∈D

h−1∑
j=0

(xijtr(vi+ne
j)− xi+ntr(vie

j)) = 0.

The summand is a point of the subspace `i and there are |D| = w such

points. This proves the backwards implication.

Suppose there are w dependent points incident with distinct subspaces

of X . Then there is a subset D ⊆ {1, . . . , n} of size w and λi,j , λi+n,j ∈ Fp,
such that ∑

i∈D

h−1∑
j=0

(λi,jxi,j − λi+n,jxi+n,j) = 0.

Recall that

xi =
h−1∑
j=0

xi,je
j .
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Since `i is a (2h− 1)-dimensional subspace, the points xj , x
p
j , . . . , x

ph−1

j are

h linearly independent points, which implies there are µi,r ∈ Fq such that

xi,j =
h−1∑
r=0

µi,rx
pr

i .

Since xi,j ∈ Frp, we have that µi,r = µp
r

i , for some µi. Substituting in the

above gives,

∑
i∈D

h−1∑
j=0

h−1∑
r=0

(λi,j(µixi)
pr − λi+n,j(µi+nxi+n)p

r

) = 0.

Defining

vi =
h−1∑
j=0

λi,jµi

this equation becomes ∑
i∈D

tr(vi+nxi − vixi+n) = 0.

�

The property that defines X as a quantum set of lines for p = 2 does

not carry over to the case p > 3. This is because we can scale any column

of G by an element of Fq \ {0, 1} and not alter the set of lines X . This will

alter the value of (u, v)a, so the geometric interpretation of C 6 C⊥a will

not be so clean as in the qubit case. Moreover, it is difficult to deduce the

pureness of the code directly from the geometry. To see this, suppose that

v ∈ C⊥a has symplectic support D and for simplicity sake assume that q is

prime. Then ∑
i∈D

(vi+nxi − vixi+n) = 0.

Now, v ∈ C if and only if there is an a ∈ Frp such that vi = a · xi. This

implies that the lines not incident with the dependent points are once again

contained in a hyperplane, but we cannot deduce that the points of the

dependencies are contained in the hyperplane a · X = 0. Indeed, the fact

that

a · (vi+nxi − vixi+n) = 0,

implies that (vi, vi+n) = λi(xi, xi+n) for some non-zero scalar λi ∈ Fq. Since

this λi depends on i, we cannot deduce that vi = a · xi for all i = 1, . . . , 2n.
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However, this also means that when p > 3 we have some flexibility in

choosing a basis for `i and this choice will affect whether C 6 C⊥a . Consider

the set of n (2h−1)-dimensional subspaces of PG(4n−1, p) associated with

a pure [[n, n − 4, 3]]q stabilizer code. By Lemma 5.9, these subspaces are

pairwise skew. In geometrical language this is called a partial spread. To

construct such a code, according to Theorem 5.7, it suffices to construct

a [n, n − 2, 3]q2 linear code D for which D⊥h 6 D. Such a code is has a

generator matrix (
x1 x2 . . . xn
y1 y2 . . . yn

)
,

where xiyj 6= xjyi and

n∑
i=1

xq+1
i =

n∑
i=1

yq+1
i =

n∑
i=1

xqi yi = 0. (9)

For any n 6 q2 + 1 such a matrix can be found by scaling the first three

columns so that the equation in (9) are satisfied.

Research Problem 4. The Glynn et al [7] manuscript developed the ge-

ometry of qubit stabilizer codes, introducing the concept of a quantum set of

lines. This led them to prove Theorem 3.14, which gives a beautiful geometric

classification of qubit stabilizer codes. Here, we have generalised the concept

of quantum set of lines to non-qubit stabilizer codes. Although we have seen

that the existence of non-identity non-zero scalars means we cannot hope for

such a clean geometric classification, one can certainly expect some geometric

classification for larger q.

6. Quantum MDS codes

6.1. Stabiliser MDS codes. Let C be a code of length n and minimum

distance d over an alphabet of size q. If we consider any n − (d − 1)

coordinates then any two codewords must be different on these coordinates

(if not the distance between them is at most d − 1), so there are at most

qn−d+1 codewords in the code. This is the Singleton bound

|C| 6 qn−d+1.

A code which attains the Singleton bound is called a maximum distance

separable code or simply an MDS code.
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Recall that if C is an additive code over Fq, where q = ph for some

prime p, then C is linear over Fp and so necessarily |C| = pr for some r, see

Section 3.3. Thus, if C is also an MDS code then h divides r and |C| = qk,

where k = n− d+ 1.

Theorem 5.4 states that an [[n, k, d]]q stabilizer code exists if and only

if there exists an additive code C 6 F2n
q of size |C| = qn−k such that

C 6 C⊥a and the minimum symplectic weight of an element of C⊥a \ C
is d. Considering C⊥a as a code over the alphabet Fq × Fq, then C⊥a has

minimum weight d, so

|C⊥a | 6 q2n−2d+2.

Since |C| = qn−k we have that |C⊥a | = qn+k, which implies that for a

[[n, k, d]]q stabilizer code to exist, we must have the condition

k 6 n− 2(d− 1).

Compare this with the Singleton bound above

k 6 n− (d− 1),

for codes of size qk.

What is perhaps surprising is that this bound holds for all [[n, k, d]]q
quantum codes. The quantum Singleton bound states that

n > k + 2(d− 1) .

Consequently, codes reaching equality are called quantum maximum distance

separable codes or QMDS codes for short. We will prove this bound in

Section 6.3.

6.2. Reed-Solomon codes. The classical example of an MDS code is the

following linear code over Fq. Denote by {a1, . . . , aq} the elements of Fq.
The Reed-Solomon code is

C = {(f(a1), . . . , f(aq), fk−1) | f ∈ Fq[X], deg f 6 k − 1},

where fk−1 denotes the coefficient of Xk−1 in f(X). If k 6 q then each

polynomial f defines a different codeword, so the dimension of C is k. A

non-zero codeword has weight at least n−k+1, since a polynomial of degree

at most k − 1 has at most k − 1 zeros. Lemma 3.1 then implies that the

minimum distance d = n− k + 1 and so the code is MDS.

We can use Theorem 5.7 to construct quantum stabilizer codes from

Reed-Solomon codes over Fq2 , but only if we can scale the coordinates of
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C so that C 6 C⊥h . Then D = C⊥h is a [n, n− k, k + 1]q2 linear MDS code

with the property that D⊥h 6 D. Observe that replacing the i-th coordinate

f(ai) by λif(ai) does not alter the parameters of the code. Such a code

is then called a generalised Reed-Solomon code. This can only be done for

k 6 q, in which case we obtain a [[q2 + 1, q2 + 1− 2k, k+ 1]]q stabilizer code.

For case k = q, one can check that the Reed-Solomon code

{(f(a1), . . . , f(aq2), fq−1) | f ∈ Fq2 [X], deg f 6 q − 1},

is contained in its Hermitian dual, so there is no need to scale in this case.

6.3. Quantum Singleton bound. To prove the quantum Singleton

bound we will need some technical tools.

1. Bloch decomposition. Let {ei} be a basis for the space of complex D×D
matrices such that tr

(
e†iej

)
= Dδij . For qubits, take for example the Pauli

matrices. Every one-quDit density matrix can then be expanded as

ρ =
1

D

∑
i

tr
(
e†iρ
)
ei,

where we recall that the trace of a matrix is given by the sum of its diagonal

elements, tr(M) =
∑
imii for any square matrix M = (mij).

Consider now an n-partite system in the space (CD)⊗n. Denote by

{Eα}, with a multi-index α = (α1, . . . , αn), the matrix basis formed by

tensor-products of the ei’s

Eα = eα1 ⊗ . . .⊗ eαn .

For tensor products, such as say E ⊗ F , one has tr(E ⊗ F ) = tr(E) · tr(F ).

In other words, the trace of a tensor product factorizes. Consequently

tr
(
E†αEβ

)
= Dnδαβ, and the matrix basis formed by {Eα} is orthogonal.

Denote by wt(Eα) the number of non-identity terms in the tensor-

decomposition, and by supp(Eα) the collection of sites where the non-

identity terms act on. Naturally, wt(Eα) = | supp(Eα)|.
We can expand an n-partite state as

ρ =
1

Dn

∑
E

tr
(
E†ρ

)
E .

As above, we from now on omit the index α for readability. This is the

Bloch decomposition of ρ.
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2. Partial trace. Consider the linear function trj which maps

trj : eα1 ⊗ . . .⊗ eαn 7→ tr
(
eαj

)
· eα1 ⊗ . . .⊗ eαj−1 ⊗ eαj+1 ⊗ . . .⊗ eαn .

The function trj is called the partial trace and its action can be understood

as that of removing the j-th tensor component.

The partial trace does not depend on the basis. Its coordinate-free

definition is the following: Let V and W be two vector spaces and denote

by IW the identity matrix on W . The partial trace trW is the unique

operator, which for all M acting on V ⊗W and N acting on V satisfies

tr(M · (N ⊗ IW )) = tr(trW (M) ·N) .

Considering the Hilbert-Schmidt inner product 〈M,N〉 = tr
(
M†N

)
, the

partial trace can be seen as the adjoint to the map V → V ⊗ IW . Note that

partial traces over different subsystems commute, trj tri = tri trj and one

has that

tr(M1 ⊗M2 ⊗ . . .⊗Mn) = tr(M1) tr(M2) · · · tr(Mn) .

3. Purification. A density matrix ρ on HA can always be diagonalized as

ρ =

dim(HA)∑
i=1

λi |λi〉〈λi|A ,

where {|λi〉A} is its set of eigenvectors and {λi} is its set of corresponding

eigenvalues.

The density matrix ρ acting on some Hilbert space HA can always be

represented as the reduction or marginal of a pure state on HA ⊗HB with

dim(HB) ≥ dim(HA). This works as follows: choose an orthonormal basis

{|λi〉B} for an arbitrary dim(HA)-dimensional subspace of HB. We then

write

|φ〉 =

dim(HA)∑
i=1

√
λi |λi〉A ⊗ |λi〉

B
.

It can be checked that trB(|φ〉〈φ|) = ρ and the state |φ〉 is known as a

purification of ρ.

4. Von Neumann entropy. Consider a classical probability distribution

represented by a set of probabilities pi ≥ 0 with
∑
i pi = 1. Its Shannon

entropy is

S(p) = −
∑
i

pi log(pi) .
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We can introduce a similar quantity for quantum states. Given a density

matrix ρ, its von Neumann entropy is defined as

S(ρ) = − tr ρ log(ρ) .

Such matrix functions of hermitian operators can be evaluated on their

eigenvalues {λi}. Then the von Neumann entropy evaluates as

S(ρ) = −
∑
i

λi log(λi) .

Let us now write SA = S(trB[ρAB]) and so on. For a state ρ on HA with

purification |φ〉 ∈ HA ⊗HB, we have that SA = SB.

The von Neumann entropy satisfies subadditivity and strong subadditivity,

SAB ≤ SA + SB ,

SABC + SB ≤ SAB + SBC .

We are now in position to prove the Quantum Singleton bound.

Theorem 6.1 (Quantum Singleton bound). Any [[n, k, d]]q code with k ≥ 1

satisfies

n ≥ k + 2(d− 1) .

Proof. The distance must be bounded by 2(d − 1) < n, as otherwise

n − (d − 1) < (d − 1) and we could recover the encoded state from two

disjoint subsystems, violating the no-cloning theorem.

Let ΠQ =
∑qk

i=1 |vi〉〈vi| be the projector onto the code space. A

purification with a reference system R leads to

|ψQR〉 =
1√
qk

qk∑
i=1

|vi〉 ⊗ |iR〉 ,

where |iR〉 is any orthonormal basis for R. Let us partition the code into the

three subsystems A,B,C, such that |A| = |B| = d−1 and |C| = n−2(d−1).

Then SR = log
(
qk
)
. As the code has distance d, any subsystem of size

strictly smaller than d cannot reveal anything about the reference system

R: indeed the condition of %RA = %R ⊗ %A is known to be a necessary and

sufficient condition for the subsystem A to be correctable [15]; this is also

equivalent to SRA = SR +SA. With the subadditivity of the von Neumann

entropy this leads to

SR + SA = SRA = SBC ≤ SB + SC ,

SR + SB = SRB = SAC ≤ SA + SC ,
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where we used that the entropies of complementary subsystems are equal

for a pure state. The combination of the above two inequalities yields

log qk = SR ≤ SC ≤ log dim(HC) = log qn−2(d−1).

�

Similar to classical MDS codes, quantum MDS are, in a certain sense,

extremal. We have the following interesting properties:

(a) If a [[n, n − 2d + 2, d]] quantum MDS code exists, then so do all

[[n− s, n− 2d+ 2 + s, d− s]] codes for all 0 ≤ s ≤ d.
(b) For every subset S ⊂ {1, . . . , n} with |S| ≤ n+k

2 , we have that

trSc(P ) ∝ 1, where P is the orthogonal projection onto the quantum

MDS code.

Let us discuss these properties: a) states that QMDS codes form families

of codes where n + k is constant. Within each family, only the member

with the highest distance has to be determined, as its descendants can

be obtained by a partial trace: tracing out over a single particle, one has

n 7→ n− 1, k 7→ k+ 1, d 7→ d− 1. This works because QMDS codes are pure

codes, that is, all their (d − 1)-party marginals are maximally mixed. For

general quantum codes, this method of making new codes from old is not

necessarily possible.

[[6, 0, 4]]2
[[5, 1, 3]]2
[[4, 2, 2]]2
[[3, 3, 1]]2

[[12, 0, 7]]3
[[11, 1, 6]]3
[[10, 2, 5]]3
[[9, 3, 4]]3
[[8, 4, 3]]3
[[7, 5, 2]]3
[[6, 6, 1]]3

n+ k = 6, D = 2 n+ k = 12, D = 3

6 ∃
6 ∃
6 ∃
6 ∃
∃
∃
∃

∃
∃
∃
∃

Figure 9. Two families of quantum MDS codes. Once the topmost existing parent code

is known, (here: [[6, 0, 4]]2 and [[8, 4, 3]]3), its descendants can be obtained by partial

traces.

Property (b) states that for all pure states |v〉 in the code, the marginals

of size less than d are maximally mixed. This implies that every vector in

the code space shows maximal bipartite entanglement across any bipartition
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of d− 1 vs. n− d+ 1 parties. Thus QMDS codes form subspaces that show

high bipartite entanglent. We relate this to similar property of classical

MDS codes: the parity check matrix H of a classical [n, k, d] code has the

property that every set of n− k columns are linearly independent.

A necessary condition for QMDS to exist is the following bound.

Proposition 6.2 ([12]). If there is a quantum MDS code with parameters

[[n, n− 2d+ 2, d]]q then

n 6 q2 + d− 2 .

This should be compared to the “trivial” upper bound for MDS codes.

If there is a (n, qk, n− k + 1)q MDS code then

n 6 q + k − 1.

The MDS conjecture states that if 4 6 k 6 q and there is a (n, qk, n −
k + 1)q MDS code then

n 6 q + 1.

This is known to hold for linear codes if q is a prime, see [3].

For quantum MDS codes, the MDS conjecture states that if 5 6 d 6
q2 − 1 and there is a linear [[n, n− 2d+ 2, d]]q MDS code then

n 6 q2 + 1.

Ketkar [14, Corollary 65] claims that if the classical MDS conjecture

holds for linear codes then quantum MDS conjecture holds for stabilizer

codes. This is not the case. By Theorem 5.4 the existence of a stabilizer

code is equivalent to the existence of an additive code, so [14, Corollary 65]

should state that the quantum MDS conjecture holds for stabilizer codes if

the MDS conjecture holds for additive codes.

Research Problem 5. Prove the MDS conjecture for linear codes with q

non-prime.

Research Problem 6. Prove the MDS conjecture for additive codes over Fq,
starting with q = p2 for some prime p.

Research Problem 7. Find all inequalities that relate the von Neumann

entropies of the marginals of multipartite systems.

Research Problem 8. Show that all QMDS codes are either stabilizer codes

or the direct sum of stabilizer codes.



68 S. Ball, A. Centelles and F. Huber

7. Weight enumerators

7.1. MacWilliams identity for linear codes. Let C be an [n, k, d]q code

and define Ai to be the number of codewords of C of weight i, i.e. the

number of codewords of C which have i non-zero coordinates. Since the

zero codeword is in C, A0 = 1 and since the minimum distance is d, Ai = 0

for all i = 1, . . . , d − 1. Let Bi denote the number of codewords of C⊥ of

weight i. The MacWilliam’s identities relate the polynomials

A(x, y) =
n∑
i=1

Aix
n−iyi

and

B(x, y) =
n∑
i=1

Bix
n−iyi.

Specifically, we have that

|C|B(x, y) = A(y + (q − 1)x, y − x)

and dually,

|C⊥|A(x, y) = B(y + (q − 1)x, y − x).

Let G be a k×n generator matrix for C and let X be the set or multi-set of

columns of G, viewed as points of PG(k−1, q). In Section 3.2, we saw that

a non-zero codeword u = aG corresponds to a hyperplane πa of PG(k−1, q)

and that πa = πλa for any λ ∈ Fq. The number of points of X incident

with the hyperplane πa is n minus the weight of the codeword u. Thus, for

i 6= 0, there are Ai/(q− 1) hyperplanes which are incident with n− i points

of X .

7.2. MacWilliams identity for quantum codes. As for classical codes,

weight enumerators can be defined for quantum codes, which again are

useful to deduce the error-correcting properties of codes and to obtain

bounds on their existence.

Let Q be a quantum code and let P be the orthogonal projection onto

Q. The weights of the primary and secondary Shor-Laflamme enumerators

are

Aj =
∑

wt(E)=j

tr(EP ) tr
(
E†P

)
,

Bj =
∑

wt(E)=j

tr
(
EPE†P

)
,
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where the sum is over Pauli operators E of weight j and phase 1.

The enumerator polynomials are given by

A(x, y) =
n∑
j=0

Ajx
n−jyj , B(x, y) =

n∑
j=0

Bjx
n−jyj .

Lemma 7.1. For a stabilizer code, Aj is q2n/|S|2 times the number of

elements in the stabilizer subgroup S that have weight j. Similarly, Bj is

qn/|S| times the number of elements in the normaliser of S of weight j.

Proof. By Lemma 2.3,

P =
1

|S|
∑
M∈S

M.

The map tr is linear and tr(M) = 0 unless M = 1 and tr(1) = qn.

Hence, if E 6∈ S,

tr(EP ) tr
(
E†P

)
= 0

and if E ∈ S then

tr(EP ) tr
(
E†P

)
= q2n/|S|2.

Thus, Aj is q2n/|S|2 times the number of elements in the stabilizer subgroup

S that have weight j.

We leave the result for Bj as an exercise.

�

The geometrical interpretation of Aj for stabilizer codes is as follows.

Suppose that X is a quantum set of lines in PG(n − k − 1, q). Then Aj is

(q − 1) times number of hyperplanes containing n− j lines of X .

The quantum MacWilliams identity states that

qnB(x, y) = A(x+ (q2 − 1)y, x− y),

and respectively that

qnA(x, y) = B(x+ (q2 − 1)y, x− y).

Before proving the quantum MacWilliams identity, consider the follow-

ing example.

Example 7.2. (self-dual hexacode) Consider the [6, 3, 4]4 code D generated

by the matrix  1 0 0 1 1 1

0 1 0 1 e e2

0 0 1 1 e2 e

 ,
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where e2 = e+1. One can prove that the minimum distance is 4 by checking

that all 3×3 submatrices are non-singular. By verifying that the hermitian

inner product (7) between any two rows is zero, one quickly concludes that

D = D⊥h . Theorem 5.7 implies that we can construct a [[6, 0, 4]]2 stabilizer

code Q(S) from D. By writing out the entries in the matrix over F2 and

considering the F2 span we obtain the matrix G(S) for this quantum code.

Consider the [[6, 0, 4]]2 code that can be constructed from the code D.

The code τ(S) is spanned by the generator matrix

G(S) =



1 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1 1

0 1 0 1 0 1 0 0 0 0 1 1

0 0 0 0 1 1 0 1 0 1 1 0

0 0 1 1 1 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0 1 1 0 1


.

Thus, the stabilizer subgroup has generators

M1 = X 1 1 X X X

M2 = Z 1 1 Z Z Z

M3 = 1 X 1 X Z Y

M4 = 1 Z 1 Z Y X

M5 = 1 1 X X Y Z

M6 = 1 1 Z Z X Y

By Lemma 5.9, the quantum set of six lines X we get from the matrix G(S)

has the property that any three lines of X span the whole space PG(5, 2).

Therefore, any two span a three-dimensional subspace which is contained

in three hyperplanes which contain no further line of X . Thus, there are

45 hyperplanes which contain exactly two lines of X . Let ` be a line of

X . There are 15 hyperplanes containing `, so counting pairs (`, π) where

` ∈ X and π is a hyperplane containing `, we conclude that any hyperplane

containing a line of X contains two lines of X .

Thus, we work out the weight distribution. For codes with k = 0 (that

is, pure states), both weight distributions coincide; this can be checked from

the definition. From before, we have that Aj is the (q − 1) times number

of hyperplanes containing n− j lines of X . Thus, we have proved that the

weight distribution for the quantum hexacode is

(A0, . . . , A6) = (1, 0, 0, 0, 45, 0, 18).
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The corresponding enumerator polynomials are

A(x, y) = B(x, y) = x6 + 45x2y4 + 18y6 .

This polynomial is indeed invariant under the quantum MacWilliams trans-

form, since

64B(x, y) = (x+3y)6+45(x+3y)2(x−y)4+18(x−y)6 = 64(x6+45x2y4+18y6).

Research Problem 9. For stabilizer codes, Aj and Bj count the number

of terms in the stabilizer S and its normaliser N(S) respectively; there is no

such combinatorial interpretation for general quantum codes. Although Aj
can interpreted as the Hilbert-Schmidt norms of the j-body correlations that

appear in the code, we would like to determine what object Bj is counting for

non-stabilizer codes.

We return to the proof of the quantum MacWilliams identity.

Quantum MacWilliams identity. We will only state a proof sketch; the

rather tedious combinatorial details can be found in [16, 13].

Let S be a collection of subsystems and denote by trS the partial trace

the systems in S. Denote by Sc the complement of S in {1, . . . , n}. Consider

now how the partial trace trS followed by a ”padding“ with the identity

acts on an operator P .

trS(P )⊗ 1S = trS
( 1

qn

∑
E

tr
(
E†P

)
E
)
⊗ 1S =

1

qn−|S|

∑
supp(E)⊆Sc

tr
(
E†P

)
E .

(10)

It can be shown (c.f. Appendix A in Ref. [13]) that this can also be

written as

trS(P )⊗ 1S =

∫
U(qn) s.t.
supp(U)⊆S

UPU†dU =
1

q|S|

∑
supp(E)⊆S

EPE† , (11)

where the integration is over the unitarily invariant Haar measure of unitary

matrices that act trivially on the subsystem Sc. The second equality follows

from the fact that any complete orthonormal matrix basis {Eα} containing

the identity forms a unitary 1-design 5.

5 t-designs replace the integration over some compact group by a finite sum. A unitary

t-design is a set of unitaries Ui, i = 1, . . . ,K acting on Cq, such that
∫
U(D)

Pt,t(U)dU =
1
K

∑K
i=1 Pt,t(Ui) holds for every homogeneous polynomial Pt,t that has degree t in the

matrix elements of U and degree t in the matrix elements of U∗.
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The quantum MacWilliams identity now essentially follows from equat-

ing Eqs. (10) and (11), summing over all subsystems of size |S| = m,

multiplying by P , and taking the trace. This yields terms of the form∑
tr
(
E†P

)
tr(EP ) and

∑
tr
(
E†PEP

)
, corresponding to the two types of

weights Aj and Bj .

Proceeding in this manner, Eq. (10) gives∑
|S|=m

tr(trS(P )⊗ 1S · P ) =
∑
|S|=m

tr
(
qm−n

∑
supp(E)⊆Sc

tr
(
E†P

)
E · P

)
= qm−n

∑
|S|=m

∑
supp(E)⊆Sc

tr
(
E†P

)
tr
(
EP
)

= qm−n
n−m∑
j=0

(
n

n−m

)(
n−m
j

)(
n

j

)−1
Aj

= qm−n
n−m∑
j=0

(
n− j
m

)
Aj .

Meanwhile, Eqs. (11) gives∑
|S|=m

tr(trS(P )⊗ 1S · P ) =
∑
|S|=m

tr
(
q−m

∑
supp(E)⊆S

E†PE · P
)

= q−m
∑
|S|=m

∑
supp(E)⊆S

tr
(
E†PEP

)
= q−m

m∑
j=0

(
n

m

)(
m

j

)(
n

j

)−1
Bj

= q−m
m∑
j=0

(
n− j
n−m

)
Bj .

Thus for every operator P and 0 ≤ m ≤ n one has that

qm−n
n−m∑
j=0

(
n− j
m

)
Aj = q−m

m∑
j=0

(
n− j
n−m

)
Bj .

Using generating functions, in other words the weight enumerator poly-

nomials A(x, y) and B(x, y), and Krawtchouk polynomials, this yields the

MacWilliams identity

qnB(x, y) = A(x+ (q2 − 1)y, x− y).

This ends the proof sketch. �
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The enumerators and their weights have a couple of interesting proper-

ties: Let K = dim(imP ).

a) The weights Aj and Bj are invariant under the local choice of basis

and are so-called local unitary invariants (LU-invariants). That is,

Aj(P ) = Aj(P
′) and Bj(P ) = Bj(P

′) ,

where P ′ = (U1⊗ . . .⊗Un)P (U†1 ⊗ . . .⊗U†n) and U1, . . . , Un are unitary

q × q matrices.

b) A0 = dim(P ) and KBj ≥ Aj ≥ 0.

c) A projection operator P with K = dim(im(P )) is a code of distance d,

if and only if it satisfies KBj = Aj for 0 ≤ j < d.

d) One can check that for codes with K = 1, the enumerator polynomial

is invariant under the quantum MacWilliams transform, and one

has B(x, y) = A(x, y). When such a code is of stabilizer type, it

corresponds to a classical self-dual code.

Some comments are in order. The weights must be LU-invariant - the

properties of the code should not depend on the way one sets up the local

coordinate system for each spin particle. The last two properties are useful

to obtain weights of hypothetical codes and to apply the machinery of linear

programming bounds [2]. That is, one sets up a system of linear equalities

and inequalities in the variables A0, . . . , An making use of a), b), and the

quantum MacWilliams identity.

For example, it is a longstanding open problem if a (pure) code with

the parameters [[24, 0, 10]]2 exists. It is known that such code must have

even weights only and using linear programming, one can fix the weight

distribution to be

[A10, A12, A14, ...A24] = [18216, 156492, 1147608, 3736557, 6248088, 4399164,

1038312, 32778] .

Indeed this is also the weight distribution of hypothetical [24, 12, 10] self-

dual additive code over GF(4) (see OEIS http://oeis.org/A030331).

Research Problem 10. Either find a quantum code with parameters [[24, 0, 10]]2,

or show that no such code can exist.

We refer to the tables by M. Grassl [10] for more existence results.

http://oeis.org/A030331
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Mòdul C3, Campus Nord, Carrer Jordi Girona 1-3, 08034 Barcelona, Spain

e-mail: simeon@ma4.upc.edu
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