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Abstract. Let C be a (n, q2k, n−k+ 1)q2 additive MDS code which is linear

over Fq . We prove that if n ≥ q+k and k+ 1 of the projections of C are linear

over Fq2 then C is linear over Fq2 . We use this geometrical theorem, other
geometric arguments and some computations to classify all additive MDS codes

over Fq for q ∈ {4, 8, 9}. We also classify the longest additive MDS codes over

F16 which are linear over F4. In these cases, the classifications not only verify
the MDS conjecture for additive codes, but also confirm there are no additive

non-linear MDS codes which perform as well as their linear counterparts. These

results imply that the quantum MDS conjecture holds for q ∈ {2, 3}.

1. Introduction. Let A be a finite set and let n and k be positive integers. An
MDS code C is a subset of An of size |A|k in which any two elements of C differ in
at least n− k+ 1 coordinates. In other words, the minimum (Hamming) distance d
between any two elements of C is n− k + 1. In general, we denote a code C ⊆ An
with minimum distance d as a (n, |C|, d)|A| code. If there is no restriction on the
size of A then MDS codes are the best performing codes when we apply nearest
neighbour decoding. They have the property that a codeword can be recovered
from any k coordinates, which makes them very useful, for example, in distributed
storage systems.

The ubiquitous example of an MDS code is the Reed-Solomon code. The Reed-
Solomon code is an example of a linear code in which the alphabet is a finite
field Fq and C is a k-dimensional subspace of Fnq . The Reed-Solomon code has
length n = q + 1 which can be extended to a code of length q + 2 in the case that
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k ∈ {3, q − 1} and q is even. Its codewords are the evaluation of polynomials of
degree at most k − 1. To give a more precise definition, suppose Fq = {a1, . . . , aq}.
The Reed-Solomon code is

C = {(f(a1), . . . , f(aq), cf ) | f ∈ Fq[X], deg f ≤ k − 1},

where cf is the coefficient of Xk−1 in f .
There are no known MDS codes which are better than the Reed-Solomon code

and it is generally assumed that there are none. The MDS conjecture reflects this
and states that for an (n, qk, d)q MDS code where d ≥ 3, the length n satisfies
n ≤ q + 1, unless k ∈ {3, q − 1} and q = 2h in which case n ≤ q + 2.

The MDS conjecture has been verified for linear codes when q is prime [2]. It is
also known to hold for linear codes when q is square and k ≤ c√q, where the constant
c depends on whether q is odd or even. And for q non-square and k ≤ c′√pq, where
again the constant c′ depends on whether q is an odd power of an even or odd
prime. See [3] for a recent survey. It is also known to hold for all MDS codes over
alphabets of size at most 8, see [18]. Here we present some evidence that the MDS
conjecture is true for additive MDS codes over finite fields by proving the conjecture
for additive MDS codes over F9 and F16, where in the last case we assume linearity
over F4.

An MDS code over A with d = 1 is Ak and with k = 1 it is the repetition code,
so these are trivial. For d = 2, an MDS code is equivalent to a Latin k-cube of
order |A|, so we only consider MDS codes with d ≥ 3. For alphabets of size 2, there
are no non-trivial MDS codes with d ≥ 3 and for alphabets of size 3, the only non-
trivial MDS code with d ≥ 3 is the unique (4, 32, 3)3 code. Alderson [1] classified all
MDS codes over alphabets of size 4 by proving the uniqueness of the (6, 43, 4)4 code
and of the (5, 43, 3)4 code. The non-existence of two mutually orthogonal Latin
squares of order 6 implies the non-existence of nontrivial MDS codes with d ≥ 3
over alphabets of size 6. In the articles [17] and [18], all MDS codes over alphabets
of size 5, 7 and 8 are classified. It turns out that all MDS codes over alphabets of
size 5 and 7 with d ≥ 3, except the (4, 72, 3)7 codes, are equivalent to linear MDS
codes. Here, for the sake of completeness, we also classify additive MDS codes over
F8 and compare this classification to the results obtained in [18].

The fact that there are at most q− 1 mutually orthogonal Latin squares of order
q, implies that if there is an (n, qk, n− k + 1)q MDS code then n ≤ q + k − 1. This
is known as the trivial upper bound and is due to Bush [7].

2. Quantum MDS codes. A quantum code on n subsystems is a K-dimensional
subspace of (Cq)⊗n. A code with minimum distance d is able to detect errors, which
act non-trivially on the code space, on up to d − 1 of the subsystems and correct
errors on up to 1

2 (d − 1) of the subsystems. If the dimension K = qk for some k
then we say the quantum code is an [[n, k, d]]q code and if not simply an ((n,K, d))q
code.

To be able to describe in more detail quantum error-correcting codes which are
of interest to us here, we specify the type of errors they can correct. Firstly, we
suppose that q is the power of a prime p. Let {|x〉 | x ∈ Fq} be a basis of Cq. We
define the following set of endomorphisms of Cq called the Pauli operators. For each
a, b ∈ Fq, we define X(a) by its action on the basis vectors, X(a) |x〉 = |x+ a〉, and

likewise Z(b) by Z(b) |x〉 = e2πitrq→p(bx)/p |x〉, where

trq→p(x) = x+ xp + xp
2

+ · · ·+ xq/p
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denotes the usual trace map from Fq to Fp. The Pauli operators are of the form
X(a)Z(b), for some a, b ∈ Fq. In the error model, the (Pauli) errors on (Cq)⊗n
are tensor products of Pauli operators. An error has weight t if precisely t of
the components in the tensor product are not the identity operator, whilst the
remaining n − t are the identity operator. A quantum error-correcting code of
minimum distance d is able to correct all Pauli errors of weight at most 1

2 (d − 1)
which act non-trivially on the code subspace. Such quantum error-correcting codes
are most commonly constructed by taking the joint eigenspace of eigenvalue 1 of a
subgroup of Pauli operators. These codes are called stabiliser codes. See [16] for
more details on stabiliser codes. The quantum Singleton bound states that for an
[[n, k, d]]q quantum code, k ≤ n − 2d + 2. A code attaining this bound is called a
quantum MDS code.

One of our motivations for studying additive MDS codes is the following theorem,
Theorem 2.1. The notation C⊥a is used to describe the orthogonal complement of
C with respect to the form, defined for u, v ∈ Fnq2 by,

(u, v)a = trq→p(γ(u · vq − uq · v)),

for some γ such that γq = −γ.
The following is [16, Theorem 15] applied to MDS codes.

Theorem 2.1. An [[n, n − 2(d − 1), d]]q stabiliser MDS code exists if and only if

there is an additive (n, q2(d−1), n− d+ 2)q2 MDS code C such that C ≤ C⊥a .

Thus, by ruling out the existence of additive MDS codes over Fq2 , one can prove
the non-existence of the corresponding stabiliser MDS code.

3. Additive codes over a finite field. Recall that we use the notation (n, qk, d)q
to denote a code of size qk which is a subset of An, where |A| = q and in which the
minimum distance is d. The parameter n is the length of the code. If q is a prime
power and the code is linear over Fq then we say that the code is an [n, k, d]q code,
in which case k is the dimension of the code.

If A is an abelian group then we define an additive code to be a code C with the
property that for all u, v ∈ C, we have u+ v ∈ C.

Theorem 3.1. Let q = ph where p is prime. An additive code C ⊆ Fnq is a subspace
over Fp.

Proof. Let u ∈ C. Summing n times the codeword u, we have that nu ∈ C, for all
n ∈ Fp. Since, by assumption, u+ v ∈ C for all u, v ∈ C, the code C is a subspace
over Fp.

We remark that if the field Fq has other proper subfields apart from Fp then there
are interesting subsets of additive codes over Fq which are linear over the larger
subfield. For example, we will be particularly interested in additive codes over F16,
which are linear over F4, and have the parameters of a linear code over F16. For
this reason, we shall fix the base field as Fq and consider additive (n, qkh, d)qh codes
which are linear over Fq.

The weight of a vector v is the number of non-zero coordinates that it has. The
minimum weight of a code C is the minimum weight of the non-zero vectors of C.

Lemma 3.2. The minimum weight w of an additive code C ⊆ Fnqh is its minimum

distance d.
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Proof. Suppose that q is a power of the prime p, that u, v ∈ C and that the distance
between u and v is d. Since C is additive (p − 1)u = −u ∈ C. Thus, v − u ∈ C.
Since v and u differ in d coordinates v − u has weight d. Thus, d ≥ w.

Suppose that u ∈ C is a codeword of weight w. Since 0 ∈ C, the distance between
u and 0 is at least d, we have that w ≥ d.

We denote by PG(k−1, q) the (k−1)-dimensional projective space over Fq. This
geometry has as points the one-dimensional subspaces of Fkq . For i ∈ {1, . . . , k}, an
(i− 1)-dimensional subspace of PG(k − 1, q) is given by an i-dimensional subspace
U of Fkq , and consists of the points whose corresponding one-dimensional subspace
is contained in U . The action of the general linear group GL(k, q) on the points of
PG(k − 1, q) induces the projective general linear group PGL(k, q). This extends
to PΓL(k, q) ∼= PGL(k, q) o Gal(Fq/Fp) which is the full automorphism group of
PG(k − 1, q).

A generator matrix for an (n, qhk, d)qh code C, which is linear over Fq, is an
hk × n matrix with entries from Fqh , whose row space over Fq is C.

Let {εi | i = 1, . . . , h} denote a basis for Fqh over Fq.
We will take a geometrical approach by associating a geometric object to an

additive code.
Let C be an additive (n, qkh, d)qh code which is linear over Fq with a generator

matrix G. A column of G is a vector v of Fhkqh , for which we can write

v =

h∑
i=1

εivi,

for some vi ∈ Fhkq . We can view the subspace spanned (over Fq) by

{vi | i ∈ {1, . . . , h}}
as a subspace of PG(kh− 1, q) which has (projective) dimension at most h− 1.

Let X be the multi-set of these subspaces, so X is a multi-set of n subspaces of
PG(kh− 1, q) each element of which is a subspace of dimension at most h− 1.

Vice-versa, given a multi-set of subspaces of of PG(kh − 1, q) of dimension at
most h− 1, after fixing a basis for the space, we can construct an additive code C
by reversing the above process.

Theorem 3.3. Let C be an additive (n, qkh, d)qh code which is linear over Fq and
let X be the multi-set of subspaces of PG(kh−1, q) obtained from a generator matrix
G for C, as described above. A hyperplane of PG(kh− 1, q) contains at most n− d
elements of X and some hyperplane contains exactly n − d elements of X . Vice-
versa, if we have such a set of subspaces then we can reverse the process and obtain
an additive (n, qkh, d)qh code which is linear over Fq.

Proof. For a non-zero vector a ∈ Fhkq , let πa be the hyperplane of PG(kh − 1, q)

corresponding to the hyperplane of Fhkq orthogonal to the vector a. Let x ∈ X
and let v be the corresponding column in G. The hyperplane πa contains x if and
only if v · a = 0. Since a · G is a codeword it has, by Lemma 3.2, at most n − d
zeros, which implies that v · a = 0 for at most n − d columns of G, which in turn
implies that at most n− d subspaces of X are contained in πa. Moreover, since the
minimum distance of C is d, there is some hyperplane πa which contains exactly
n − d elements of X . Clearly, we can also reverse the argument, constructing an
additive (n, qkh, d)qh code from such a set of subspaces.
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Two codes C and C ′ over an alphabet A are equivalent if one can be obtained
from the other by a permutation of the coordinates and by permutations of the
elements of A in any coordinate.

Theorem 3.4. Let C and C ′ be additive (n, qkh, d)qh codes which are linear over
Fq. Let X (resp. X ′) be the multi-set of subspaces obtained from a generator matrix
G (resp. G′) for C (resp. C ′). If there is an element σ ∈ PΓL(kh, q) such that
σ(X ) = X ′ then C and C ′ are equivalent.

Proof. An element σ ∈ PΓL(kh, q) acts on X , by applying a field automorphism to
the elements of X and then by left multiplying G by a non-singular kh×kh matrix.
Applying a field automorphism to the matrix G simply permutes the elements of Fq
in each coordinate. Multiplying G by a non-singular kh×kh matrix, simply replaces
G by another generator matrix for C. Ordering the elements of X is equivalent to
ordering the coordinates of the elements of C.

Let X be a multi-set of subspaces of dimension at most h− 1 of PG(kh− 1, q).
As mentioned before Theorem 3.3, if we fix a basis for this space we can obtain
an additive code C over Fqh , which is linear over Fq. If we change the basis for
PG(kh − 1, q) then we will obtain a code equivalent to C, so the code does not
depend on which basis we choose. Now suppose that we have two sets of subspaces
X and X ′ from which we construct additive codes C and C ′ respectively. We say the
codes C and C ′ are PΓL-equivalent if there exists an element σ ∈ PΓL(kh, q) such
that σ(X ) = X ′. It is a seemingly overlooked question as to whether the converse
statement in Theorem 3.4 is true. Explicitly, if two additive codes C and C ′ are
equivalent then does there exist an element σ ∈ PΓL(kh, q) such that σ(X ) = X ′?
Thus, we are asking that if two additive codes C and C ′ are equivalent, then are
they necessarily PΓL-equivalent? Equivalently, if two additive codes C and C ′ are
PΓL-inequivalent then is it true that they are inequivalent? One can ask the same
question for linear codes.

An isometry map from a code C to a code C ′ is a Hamming distance preserving
bijection. We observe that PΓL-equivalence is equivalent to semi-linear isometric
equivalence defined in [4]. MacWilliams proved in her thesis [22] that there exists
an element σ ∈ PGL(kh, q) such that σ(X ) = X ′ if and only if there is a linear
isometry between linear codes C and C ′. This is in the same spirit as the above
question, but it is not the same question. For a proof of this MacWilliams theorem,
see [6] or [25].

The dual code of C is defined as

C⊥ = {u ∈ Fnqh | trqh→q(u · v) = 0, for all v ∈ C}.

Theorem 3.5. The dual of an additive (n, qkh, d)qh code C which is linear over Fq
is an additive (n, q(n−k)h, d′)qh code C⊥ which is linear over Fq.

Proof. Since C⊥ is an orthogonal subspace to C, considering it as a subspace over
Fq, we have that |C⊥| = q(n−k)h. Thus, C⊥ is an additive (n, q(n−k)h, d′)qh code,
which is linear over Fq.

4. Additive MDS codes over a finite field. There are many well known results
regarding linear codes over a finite field which carry through to additive MDS codes
over a finite field. In this section, we prove some of these results.

We define X as an arc of (h−1)-spaces if it is a set of (h−1)-dimensional spaces
of PG(kh− 1, q) with the property that any k elements of X span the entire space.
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An important remark here is that an arc X of (h − 1)-spaces of PG(2h − 1, q)
is a partial spread. In other words, the condition that any two elements of X span
the whole space, is that they are skew.

Theorem 4.1. Let C be an additive (n, qkh, d)qh code which is linear over Fq and
let X be the set of subspaces obtained from a generator matrix G for C. Then X is
an arc of (h− 1)-spaces if and only if C is an MDS code.

Proof. Let X be a set of subspaces obtained from a generator matrix G for C. Any
k subspaces of X span PG(kh − 1, q) iff every hyperplane contains at most k − 1
subspaces of X . By Theorem 3.3, a hyperplane contains at most k− 1 subspaces of
X if and only if C is an MDS code.

In the construction of the set X , we wrote each element of Fqh in G with respect
to a basis for Fqh over Fq. In this way we consider a generator matrix G for C as
kh × nh matrix with entries from Fq. If we arbitrarily split the rows into disjoint
sets of h rows, whilst maintaining the natural partition of the columns we can also
consider G as a k×n matrix whose entries are h×h matrices with entries from Fq.
The MDS property is given by the following theorem.

Theorem 4.2. A k× n matrix whose entries are h× h matrices with entries from
Fq is a generator matrix for an additive (n, qkh, n− k+ 1)qh MDS code if and only
if every k × k submatrix of G, considered as a kh× kh matrix, is non-singular.

Proof. This follows from Theorem 4.1.

Theorem 4.2 can be compared to similar statements for MDS codes over rings,
for example, see [23, Theorem 3].

Theorem 4.3. The dual of an additive (n, qkh, n− k + 1)qh MDS code C which is

linear over Fq is an additive (n, q(n−k)h, k+1)qh MDS code C⊥ which is linear over
Fq.

Proof. By Theorem 3.5 and Lemma 3.2, we only have to prove that the minimum
weight of C⊥, as a code over Fqh , is k + 1. Suppose that C⊥ has an element v of

weight at most k. Consider the set of k vectors of Fkhqh obtained from the columns of

a generator matrix for C corresponding to the non-zero coordinates of v. Writing
these vectors out over Fq we obtain a set of kh linearly dependent vectors of Fkhq .
This implies that the corresponding k subspaces of X do not span the entire space,
contradicting Theorem 4.1.

The following lemma is a generalisation of what is sometimes called the projection
lemma for arcs.

Lemma 4.4. Let X be an arc of (h−1)-spaces in PG(kh−1, q) and let A be a subset
of X of size r ≤ k − 2. The projection of the elements of X \ A from the subspace
spanned by the elements of A is an arc of (h− 1)-spaces in PG((k − r)h− 1, q).

Proof. If a subset of k− r subspaces of X \A do not span PG((k− r)h− 1, q) then,
together with the elements of A, they do not span PG(kh− 1, q), contradicting the
arc property.
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5. Projections onto Desarguesian spreads. The vector space Fqh is isomorphic

to Fhq when viewed as a vector space over Fq. Under this isomorphism, we get a

map Ψ from the (r − 1)-dimensional subspaces of PG(k − 1, qh) to the (rh − 1)-
dimensional subspaces of PG(kh − 1, q). This is called the field reduction map in
[19], to which we refer to for more details. The image of the points of PG(k− 1, qh)
under Ψ is a Desarguesian spread of (h−1)-dimensional subspaces of PG(kh−1, q).
If X is an arc of points of PG(k − 1, qh) then Ψ(X ) is an arc of (h − 1)-spaces of
PG(kh− 1, q).

Lemma 5.1. If X is arc of (h− 1)-dimensional subspaces of PG(kh− 1, q) which
is contained in a Desarguesian spread then Ψ−1(X ) is an arc of PG(k − 1, qh).

To be able to identify an arc of lines of PG(5, q) which is contained in a Desar-
guesian spread we will use Theorem 5.3. We introduce some terminology which we
will need in the proof of Theorem 5.3.

A partial spread set S is a set of h × h matrices with entries from Fq, with
the property that for all A,B ∈ S, A 6= B, the matrix A − B is non-singular, i.e.
det(A− B) 6= 0.

For each A ∈ S, we define an (h−1)-dimensional subspace πA, to be the subspace
spanned by the columns of the matrix(

Ih
A

)
,

where Ih is the h× h identity matrix.
Let π∞ be the (h−1)-dimensional subspace spanned by the columns of the matrix(

Oh

Ih

)
,

where Oh is the h× h zero matrix.
The name “partial spread set” derives from the fact that

{πA | A ∈ S} ∪ {π∞}

is a partial spread, i.e. an arc of (h− 1)-dimensional subspaces of PG(2h− 1, q).
We will need a converse of this statement, which we prove in the following lemma.

Lemma 5.2. A partial spread (i.e. an arc) X of (h− 1)-dimensional subspaces of
PG(2h− 1, q) which contains π∞ is given by a partial spread set.

If h = 2 then we can assume that the partial spread set is

S =

{(
x1 f1(x1, x2)
x2 f2(x1, x2)

)
| (x1, x2) ∈ T

}
,

for some subset T of F2
q. Moreover, if the partial spread is contained in a Desar-

guesian spread then we can take f1 and f2 to be linear and if O2, I2 ∈ S then

f1(x1, x2) = a1x2, and f2(x1, x2) = x1 + a2x2,

for some a1, a2 ∈ Fq such that X2 +a2X−a1 is an irreducible polynomial in Fq[X].

Proof. Let πA be an element of the arc X . Since π∞ is contained in π, the h-
dimensional subspace X2 = · · · = Xh = 0, there is a unique point in the intersection
of πA and π, which is necessarily of the form

(1 : 0 : · · · : 0 : x1 : · · · : xh),
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where we use the separator : to indicate that this is a projective point. The same
argument works for any of the first h coordinates, so we conclude that each element
of the arc is the span of the columns of a matrix of the form(

Ih
A

)
.

Moreover, since X is an arc, the set of matrices

{A | πA ∈ X}

is a partial spread set.
Clearly, any two elements of a partial spread set differ in the i-th column, for

any i ∈ {1, . . . , h}, so in particular we can assume that if h = 2 the partial spread
set has the desired form.

If the partial spread is contained in a Desarguesian spread then we can take f1
and f2 to be linear. This follows from [8, pp. 220]. Moreover, if O2, I2 ∈ S then
f1(0, 0) = f2(0, 0) = 0, f1(1, 0) = 0 and f2(1, 0) = 1, from which it follows that

f1(x1, x2) = a1x2, and f2(x1, x2) = x1 + a2x2,

for some a1, a2 ∈ Fq.
The fact that (

x1 a1x2
x2 x1 + a2x2

)
and

(
0 0
0 0

)
are in the spread set of a Desarguesian spread containing O2 and I2 implies that∣∣∣∣ x1 a1x2

x2 x1 + a2x2

∣∣∣∣ 6= 0,

which implies that X2 + a2X − a1 is an irreducible polynomial in Fq[X].

We are now in a position to prove the main theorem of the article.

Theorem 5.3. Let X be an arc of at least q+k lines of PG(2k−1, q), where k ≥ 3.
If there is a subset S of X of size k + 1 with the property that the projection of X
from any (k−2)-subset of S is contained in a Desarguesian spread of PG(3, q) then
X is contained in a Desarguesian spread of PG(2k − 1, q).

Proof. We will prove the statement first for k = 3.
After choosing a suitable basis, we can suppose that X is a set of lines whose

i-th line `i is spanned by the (2i− 1)-th and 2i-th column of a matrix of the form
1 0 0 0 0 0 1 0 . . .
0 1 0 0 0 0 0 1 . . .
0 0 1 0 0 0 1 0 . . .
0 0 0 1 0 0 0 1 . . .
0 0 0 0 1 0 1 0 . . .
0 0 0 0 0 1 0 1 . . .

 ,

and that the projection from `i, i ∈ {1, 2, 3, 4}, is contained in a Desarguesian
spread.

By hypothesis, the projection from `2 and `3 are partial spreads contained in
Desarguesian spreads whose partial spread sets contain the zero matrix and the
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identity matrix. Hence, by Lemma 5.2, the above matrix is of the form
1 0 0 0 0 0 1 0 1 0 . . .
0 1 0 0 0 0 0 1 0 1 . . .
0 0 1 0 0 0 1 0 x1 a1x2 . . .
0 0 0 1 0 0 0 1 x2 x1 + a2x2 . . .
0 0 0 0 1 0 1 0 y1 b1y2 . . .
0 0 0 0 0 1 0 1 y2 y1 + b2y2 . . .

 ,

where the columns are given by (x1, x2) ∈ T , for some subset T ⊆ F2
q of size |X |−4.

Observe that y1 and y2 are functions of x1 and x2, so yi = yi(x1, x2) for i ∈ {1, 2}.
We say in this proof that two partial spreads in subspaces of PG(2k − 1, q)

are compatible if they are both contained in the same Desarguesian spread of
PG(2k − 1, q). Recall from Lemma 5.2 that (a1, a2) are coefficients of the irre-
ducible polynomial X2 + a2X − a1 defining Fq2 . Therefore, to prove X is contained
in a Desarguesian spread of PG(5, q), we have to show that a1 = b1 and a2 = b2. In
other words, that the projections from `2 and `3 are onto compatible Desarguesian
spreads. In fact we shall prove, equivalently, that the projections from `1 and `4
are onto compatible Desarguesian spreads.

By hypothesis, the projection from `1 is contained in a Desarguesian spread.
Observe that `4 is projected onto a line corresponding to the identity matrix in the
partial spread set, `2 is projected onto a line corresponding to the zero matrix and
`3 is projected onto π∞. Hence, by Lemma 5.2,{(

y1 b1y2
y2 y1 + b2y2

)(
x1 a1x2
x2 x1 + a2x2

)−1
| (x1, x2) ∈ T

}
is equal to {(

z1 c1z2
z2 z1 + c2z2

)
| (x1, x2) ∈ T

}
where zi = zi(x1, x2), for i ∈ {1, 2}.

Therefore,

y1 = x1z1 + c1x2z2,
y2 = x1z2 + x2(z1 + c2z2)

b1y2 = a1x2z1 + (x1 + a2x2)c1z2,
y1 + b2y2 = a1x2z2 + (x1 + a2x2)(z1 + c2z2).

If z2 = 0 then the projection of X \{`1, `2} from `1 has at most q lines, so X has
size at most q + 2, a contradiction. Hence, we have that z2 6= 0.

Thus, eliminating y1, y2 and z1, these equations imply

((a1−b1)(c2−b2)+(a2−b2)(b1−c1))x1 = ((c1a2−c2a1)(b2−a2)+(c1−a1)(b1−a1))x2.

If not both of the coefficients of x1 and x2 are zero then x1 and x2 satisfy a linear
relation which implies X \ {`2, `3} has at most q lines. This implies that X has at
most q + 2 lines, again a contradiction.

Thus, both are zero and we can solve for c1 and c2 in terms of a1, a2, b1, b2.
Explicitly the system is

(b2 − a2)c1 + (a1 − b1)c2 = b2a1 − a2b1,
((b1 − a1) + a2(b2 − a2)c1 + a1(a2 − b2)c2 = a1(b1 − a1).

If a1 = b1 and a2 = b2 then the projections from `2 and `3 are onto compatible
Desarguesian spreads, which is what we want to prove. If not then c1 and c2 have
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a unique solution, since otherwise (a1 − b1)/(a2 − b2) is a root of X2 + a2X − a1,
which, as we already observed in Lemma 5.2, is an irreducible polynomial in Fq[X].

By hypothesis, the projection from `4 is also contained in a Desarguesian spread.
To obtain the projection from `4, we project the elements of X onto X1 = X2 = 0.
Observe that `1 is projected onto a line corresponding to the identity matrix in the
partial spread set, `2 is projected onto a line corresponding to the zero matrix, and
`3 is projected onto π∞. The line of X parameterised by (x1, x2) ∈ T is projected
onto the line spanned by the columns of

0 0
0 0

1− x1 −a1x2
−x2 1− x1 − a2x2

1− y1 −b1y2
−y2 1− y1 − b2y2

 .

Now, by Lemma 5.2, we have that{(
1− y1 −b1y2
−y2 1− y1 − b2y2

)(
1− x1 −a1x2
−x2 1− x1 − a2x2

)−1
| (x1, x2) ∈ T

}
is equal to {(

w1 d1w2

w2 w1 + d2w2

)
| (x1, x2) ∈ T

}
where wi = wi(x1, x2), for i ∈ {1, 2}. Employing exactly the same argument as in
the projection from `1,

((a1 − b1)(d2 − b2) + (a2 − b2)(b1 − d1))(1− x1)

= ((d1a2 − d2a1)(b2 − a2) + (d1 − a1)(b1 − a1))(−x2).

If at least one of the coefficients of 1−x1 and −x2 is non-zero then x1 and x2 satisfy
an affine linear relation which implies X \ {`2, `3} has at most q lines. This implies
that |X | ≤ q + 2.

Thus, both are zero and we can solve for d1 and d2 in terms of a1, a2, b1, b2 and
conclude that c1 = d1 and c2 = d2.

Hence, the projections from `1 and `4 are compatible from which it follows that
X is contained in a Desarguesian spread.

We now prove the statement for k ≥ 4. As in the case k = 3 we can suppose,
after a suitable change of basis, that X is a set of lines whose i-th line `i is spanned
by the (2i− 1)-th and 2i-th column of a matrix of the form

1 0 0 0 . . . . . . 0 0 1 0 1 0 . . .
0 1 0 0 . . . . . . 0 0 0 1 0 1 . . .
0 0 1 0 . . . . . . 0 0 1 0 x11 a11x12 . . .

0 0 0 1
. . . . . . 0 0 0 1 x12 x1 + a12x12 . . .

...
... . . .

. . .
. . .

. . .
. . .

...
...

...
...

...
...

... . . . . . . . . .
. . .

. . .
...

...
...

...
...

0 0 0 0 . . . . . . 1 0 1 0 xk−1,1 ak−1,1xk−1,2 . . .
0 0 0 0 . . . . . . 0 1 0 1 xk−1,2 xk−1,1 + ak−1,2xk−1,2 . . .


,

where we suppose that the projection hypothesis is satisfied by the lines in the set
L = {`1, . . . , `k+1}. Let M be any (k − 3)-subset of L \ {`1, `k+1}. The projection
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onto an arc of lines of PG(5, q) from M , satisfies that hypothesis of the theorem
for the lines of L \M for k = 3. Therefore, we have that all the spread sets are
compatible and that the arc is contained in a Desarguesian spread.

We now reformulate Theorem 5.3 for codes, slightly weakening the hypothesis to
make it more readable. By Lemma 4.4, projecting an arc X of (h− 1)-dimensional
spaces of PG(kh−1, q), from a fixed (h−1)-dimensional subspace, is an arc of (h−1)-
dimensional spaces of PG((k − 1)h − 1, q). Therefore, an additive (n, qkh, n − k +
1)qh additive MDS code projects onto an (n, q(k−1)h, n − k + 1)qh additive MDS
code. Some authors call this process shortening. This should not be confused with
truncating a code which is simply deleting some coordinates from all the codewords,
which in our case is equivalent to taking a subset of X . Blokhuis and Brouwer [5,
Proposition 3.1] proved that if all the truncations of an additive code over F4 are
even-dimensional then the code is in fact linear over F4. That statement can be
compared to the following theorem, which follows directly from Theorem 5.3.

Theorem 5.4. If n ≥ q + k ≥ q + 3 and k + 1 of the projections of an (n, q2k, n−
k + 1)q2 additive MDS code C, which is linear over Fq, are linear over Fq2 then C
is linear over Fq2 .

Proof. Let X be the arc of (h−1)-dimensional subspaces obtained from the columns
of a generator matrix for C. By hypothesis, there is a subset S of X of size k + 1,
such that the projection of X from an element of S is contained in a Desarguesian
spread. Therefore, if we project X from any (k− 2)-subet of S then this projection
will be contained in a Desarguesian spread. By Theorem 5.3, this implies X is
contained in a Desarguesian spread, which implies C is linear over Fq2 .

6. Additive MDS codes over small finite fields. The computational results
were obtained in two ways.

Method 1. The first method used to classify arcs in PG(kh − 1, q) started by
classifying partial spreads in PG(2h− 1, q) up to PΓL(2h, q) isomorphism, building
on the work of Soicher [24]. These classifications were obtained using GAP [11], and
in particular, the packages GRAPE [12] and FinInG [9]. Of particular use was the
functionality in GRAPE to classify the maximal cliques of given size in a graph, up
to the action of a given subgroup of the automorphism group of that graph, as well
as Linton’s program SmallestImageSet (included with GRAPE), which determines
the lexicographically least set in a G-orbit of sets, without explicitly computing the
G-orbit; see [20]. Once a classification of arcs in PG((k − 1)h− 1, q) was obtained
recursively, an exhaustive search was undertaken to determine those arcs of size n
which “lifted” to arcs of size n+ 1 in PG(kh− 1, q). These lifts were then checked
for isomorphic copies.

Method 2. The other method used a breadth first algorithm with isomorphism
rejection under the collineation group of the ambient projective space at every
step. This type of algorithm is described in [4, Section 9.6], (where it is called
snakes and ladders). The algorithms were implemented in GAP based on some
of the functionality provided by FinInG, albeit with a lot of tweaking. The arcs
are built up from the empty set adding one subspace at every step. For each size
n, the algorithm stores a list of orbit representatives of arcs of size n, together
with a Schreier vector (allowing constructive recognition) and the stabiliser of the
representative. At the next step, for each representative, the algorithm computes
the orbits on the set of all possible extensions (to an arc of size n + 1) of the
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representative under the stabiliser of the representative. This gives a list of all
possible extensions of size n + 1 of all representatives of arcs of size n. The list of
arcs of size n + 1 thus obtained is then reduced by removing the representatives
from the list which belong to the same orbit as a representative which comes earlier
in the list. This step uses the Schreier vectors which were stored at the previous
steps. In the process the stabilisers of the new representatives are also computed.

Case qh = 22.

size 4 5 6
number of arcs of points of PG(2, 4) 1 1 1

number of arcs of lines of PG(5, 2) 1 1 1

Table 1. The classification of arcs of lines of PG(5, 2).
The classification in Table 1 was obtained using Method 2. Suppose there exists an
(n, 4k, n−k+1)4 additive MDS code. By Theorem 4.3 and the trivial upper bound,
we can assume that k ≤ 1

2n ≤
1
2 (k+ 3) which gives k ≤ 3. Thus, from Table 1, we

conclude that all additive MDS codes over F4 are equivalent to a linear code over
F4. Indeed, it was already observed in [18], that all MDS codes over an alphabet of
size 4 are equivalent to linear codes. This also follows from the Blokhuis-Brouwer
theorem [5, Proposition 3.1] mentioned before.

Case qh = 23.

size 4 5 6 7 8 9 10
number of arcs of points of PG(2, 8) 1 1 3 2 2 2 1
number of arcs of planes of PG(8, 2) 1 2 4 2 2 2 1

Table 2. The classification of arcs of planes of PG(8, 2).
The classification in Table 2 was obtained using Method 2. Table 2 implies that
the longest (n, 83, n−2)8 additive MDS code which is not PΓL-equivalent to a linear
MDS code is a (6, 83, 4)8 code. It is unique, up to PΓL-equivalence, and has the
following generator matrix

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 0
0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0


.

In [18], it was proven that all (n, 8k, d)8 MDS codes with d ≥ 5 are equivalent
to linear codes and all (n, 8k, 4)8 MDS codes with k ≥ 4 are equivalent to linear
codes. There are precisely 39 equivalence classes of (6, 83, 4)8 codes. From the table
above, assuming PΓL-inequivalence implies inequivalence, we conclude that three
of these contain a linear code and one contains an additive non-linear code. We
conclude that the only additive MDS codes over F8, which are not PΓL-equivalent
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to a linear code, are the (5, 83, 3)8 (its dual which is a (5, 82, 4)8 code coming from
a partial spread of planes of PG(5, 2)) and the (6, 83, 4)8 additive code, which must
be necessarily equivalent to its dual.

Case qh = 32.

size 4 5 6 7 8 9 10
# of arcs of points of PG(2, 9) 1 2 6 3 2 1 1

# of arcs of lines of PG(5, 3) 1 4 13 4 3 1 1

Table 3. The classification of arcs of lines of PG(5, 3).

The classification in Table 3 was obtained using Method 1 for n ≥ 8 and then
checked and completed using Method 2. By Table 3, the longest (n, 93, n − 2)9
additive MDS code which is not PΓL-equivalent to a linear MDS code is a (8, 93, 6)9
code. It is unique, up to PΓL-equivalence, and has the following generator matrix

1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 2 2 0 2 2 0 1 2
0 0 0 1 0 0 0 1 0 2 1 1 1 2 1 0
0 0 0 0 1 0 1 0 0 1 2 0 1 1 2 1
0 0 0 0 0 1 0 1 2 1 2 2 2 0 0 2

 .

As a code C over F9, this implies that

C = {(x, y, z, x+ y + z, x+ e3y + y3 + e3z − e2z3, x+ e3y − y3 + e3z + e2z3,

x+ ey − e2y3 + ez + z3, x+ ey + e2y3 + ez − z3) | x, y, z ∈ F9},
where e is a primitive element of F9 satisfying e2 = e + 1. It is possible to verify
directly that three coordinates of the elements of C are zero if and only if x =
y = z = 0, see [10, Proposition 5.1]. Furthermore, this code has the property that
C ≤ C⊥a , so Theorem 2.1 implies that there is a [[8, 2, 4]]3 quantum MDS code,
which does not come from a linear code over F9 contained in its Hermitian dual.
There is an example of a [[8, 2, 4]]3 quantum MDS code, which does come from a
linear code over F9 contained in its Hermitian dual, see [13].

To determine the additive non-linear MDS codes over F9 for k ≥ 4, by The-
orem 4.3, we can assume that k ≤ 1

2n. By Theorem 5.3, if we assume that the
projection onto k = 3 has size at most 6, then we have a contradiction given by the
inequalities

4 ≤ k ≤ 1
2n

and

n− (k − 3) ≤ 6.

Thus, to find additive non-linear MDS codes over F9 for k ≥ 4, by Theorem 5.3, we
can assume that at least one of the projections down to k = 3 is onto one of the
examples of either the (7, 93, 5)9 or the (8, 93, 6)9 additive non-linear MDS code.

Method 1 was employed to reveal that there is no additive (8, 94, 5)9 (resp.
(9, 94, 6)9) code which projects onto the (7, 93, 5)9 (resp. (8, 93, 6)9) code, so we
conclude that the only additive non-linear MDS codes over F9, with k ≥ 3 and
d ≥ 4, are the (7, 93, 5)9 and the (8, 93, 6)9 additive non-linear MDS code and their
duals, which are (7, 94, 4)9 and (8, 95, 4)9 additive non-linear MDS codes.
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The (n, 92, n − 1)9 additive non-linear MDS codes come from partial spreads of
PG(3, 3) and are tabulated in the following table. The ones that do not correspond
to an arc of points in PG(1, 9) correspond to additive non-linear codes. The duals
of these codes are additive non-linear (n, 9n−2, 3)9 MDS codes. These additive
non-linear codes are not PΓL-equivalent to a linear code.

size 4 5 6 7 8 9 10
# of arcs of points of PG(1, 9) 2 2 2 1 1 1 1

# of arcs of lines of PG(3, 3) 3 4 5 4 3 2 2

Table 4. The classification of arcs of lines of PG(3, 3).

The classification in Table 4 was obtained using Method 2.

Case qh = 42.

size 5 6 7 8 9 10 11
# of arcs of PG(2, 16) 3 22 125 865 1534 1262 300

# of line-arcs of PG(5, 4) 10 360 8294 15162 2869 1465 301
size 12 13 14 15 16 17 18

# of arcs of PG(2, 16) 159 70 30 9 5 3 2
# of line-arcs of PG(5, 4) 159 70 30 9 5 3 2

Table 5. The classification of arcs of lines of PG(5, 4).

The classification in Table 5 was obtained using Method 1 for n ≥ 11 employing
Theorem 5.3 and then checked and completed using Method 2. The table indicates
that the longest (n, 163, n − 2)16 additive MDS code which is not PΓL-equivalent
to a linear MDS code is an (11, 163, 9)16 code. It is unique, up to PΓL-equivalence,
and has the following generator matrix


1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 0 e 1 e2 1 1 0 1 e e2 e 1 e e
0 0 0 1 0 0 0 1 e e2 e 0 e2 1 1 e2 e2 e2 0 e e 1
0 0 0 0 1 0 1 0 1 e e e e2 0 0 e 0 1 e e2 e 1
0 0 0 0 0 1 0 1 e 0 0 e 1 e e e2 1 e2 e e 1 1


where e is a primitive element of F4 satisfying e2 = e+ 1.

As a code C over F16 this implies that

C = {(x, y, z, x+y+z, x+θ12y+θ4y4+θz+θ12z4, x+θ2y+θ7y4+z+θ7z4, x+θ4y4+θ2z

+θ4z4x+ θ14y+ θ7y+ θ12z+ θ4z4, x+ θy+ θ9y4 + θ14z+ θ7z4, x+ θ2y4 + z+ θ14z4,

x+ θ14y + θ4y4 + θ12z + θ7z4) | x, y, z ∈ F16},
where θ is a primitive element of F16 satisfying θ4 = θ + 1.

Method 1 reveals that the unique (11, 163, 9)16 code does not lift to a (12, 164, 9)16
code. We were not able to check the 203 additive non-linear (10, 163, 8)16 codes to
see if they lift or not.
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Theorem 6.1. The longest additive MDS codes over F16, which are linear over F4,
are linear over F16.

Proof. Suppose there is a (17, 16k, 18− k)16 additive MDS code over F16, which is
linear over F4. By Theorem 3.5, we can suppose k ≤ 1

2n, so k ≤ 8. By Theorem 4.1,
the set of columns of a generator matrix for the code is an arc X of lines of PG(2k−
1, 4). By Lemma 4.4, this arc projects to an arc of lines of size 17 − (k − 3) =
20 − k ≥ 12 in PG(5, 4), which by Table 5 is contained in a Desarguesian spread.
By Theorem 5.3, this implies that X is contained in a Desarguesian spread, which
implies that the code is linear.

All [17, k, 18 − k]16 linear MDS codes over F16 have been classified, see [14]. If
k 6∈ {3, 14} then a [17, k, 18 − k]16 linear MDS code over F16 is a Reed-Solomon
code. For k = 3 there are [18, 3, 16]16 linear MDS codes over F16 which can be
obtained by extending the Reed-Solomon codes or by taking the code generated
by the matrix whose columns are the points of a Lunelli-Sce hyperoval [21]. These
codes shorten to [17, 3, 15]16 linear MDS codes over F16 and dualise to [18, 15, 4]16
linear MDS codes over F16 which truncate to [17, 15, 3]16 MDS codes and project
to [17, 14, 4]16 MDS codes.

7. The MDS conjecture and the quantum MDS conjecture. The results in
the previous section allow us to prove the MDS conjecture in the following cases.
Note that the MDS conjecture is known to hold for all codes over F4 and F8, see
[18].

Theorem 7.1. The MDS conjecture holds for additive codes over F9 and for addi-
tive codes over F16 which are linear over F4.

Proof. In the case of q = 9 we determined all additive non-linear codes and all are
of length n ≤ 8. Since the MDS conjecture has been verified for linear codes, see
the survey article [14], we conclude that the MDS conjecture holds.

For q = 16, suppose there is a (18, 16k, 19 − k)16 additive MDS code which is
linear over F4. By Theorem 4.3, we can assume that k ≤ 9. By Theorem 4.1, there
is an arc of lines of PG(2k−1, 4) of size 18 which projects down to an arc of lines of
PG(5, 4) of size 21 − k ≥ 12. In Table 5, we deduced that the largest arc of lines
which is not contained in a Desarguesian spread is of size 11. Hence, all projections
are onto arcs of lines contained in a Desarguesian spread which, by Theorem 5.4,
implies that the (18, 16k, 19− k)16 additive MDS code is linear over F16.

The quantum MDS conjecture, initially mentioned in [16], and again in [15],
states that apart from the case d = 4 and q = 2h, if there is an [[n, n− 2(d− 1), d]]q
stabiliser MDS code with d ≥ 3 then n ≤ q2 + 1. By Theorem 2.1, the existence
of a [[q2 + 2, q2 + 2 − 2(d − 1), d]]q stabiliser MDS code implies the existence of a
(q2+2, d−1, q2+4−d)q2 additive MDS code. The non-existence of such a code was
already known for q = 2 and here we have ruled out such codes for q = 3. Thus,
we conclude that the quantum MDS conjecture holds for q ∈ {2, 3} and if there is
a counter-example for q = 4 then it must come from an additive (18, 16k, 19− k)16
MDS code which is not linear over F4.

8. Conclusions and further work. One could try and extend Theorem 5.4 to
additive codes over Fqh , for h ≥ 3.
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There is a (14, 253, 12)25 additive MDS code which is not PΓL-equivalent to a
linear MDS code, see [10]. This corresponds to an arc of lines of PG(5, 5) of size
14. We have not been able to classify all partial spreads of lines (i.e. arcs of lines)
in PG(3, 5) but if this were feasible, it would most likely be feasible to classify the
largest arcs of lines in PG(5, 5). Likewise, a classification of partial spreads of planes
of PG(5, 3), would allow us to determine the largest arcs of planes in PG(8, 3). If
those largest examples turn out to be contained in a Desarguesian spread then we
would verify that there are no additive non-linear codes over F25 (resp. F27) which
outperform linear codes over F25 (resp. F27).

It is tempting to believe that relaxing the linearity constraint to additivity would
allow the discovery of MDS codes which outperform their linear counterparts. How-
ever, it appears that this is not the case, as we have confirmed here for small fields.
In fact, it appears that if we do not impose linearity then additive codes are not
nearly as good as linear codes. This was also the conclusion in the work of [1], [17]
and [18] for smaller alphabets, when one considers MDS codes with no constraints.
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the referees for their comments.
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