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1 Heegner points and Stark-Heegner points

1.1 Heegner points

Let E/Q be an elliptic curve over the field of rational numbers, of conductor N . Thanks to
the proof of the Shimura-Taniyama conjecture, the curve E is known to be modular, i.e.,
there is a normalised cuspidal newform f =

∑∞
n=1 an(f)qn of weight 2 on Γ0(N) satisfying

L(E, s) = L(f, s), (1)

where

L(E, s) =
∏

p prime

(1− ap(E)p−s + δpp
1−2s)−1 =

∞∑
n=1

an(E)n−s (2)

is the Hasse-Weil L-series attached to E, whose coefficients with prime index are given by
the formula

(ap(E), δp) =


(p+ 1− |E(Fp)|, 1) if p - N ;

(1, 0) if E has split multiplicative reduction at p;
(−1, 0) if E has non-split multiplicative reduction at p;
(0, 0) if E has additive reduction at p, i.e., p2|N,

and

L(f, s) =
∞∑
n=1

an(f)n−s (3)

is the Hecke L-series attached to the eigenform f . Hecke’s theory shows that L(f, s) has an
Euler product expansion identical to (2), and also that it admits an integral representation
as a Mellin transform of f . This extends L(f, s) analytically to the whole complex plane
and shows that it satisfies a functional equation relating its values at s and 2− s.

The modularity of E thus implies that L(E, s), which a priori is only defined on the right
half-plane {s ∈ C,Re(s) > 3/2} of absolute convergence for (2), enjoys a similar analytic
continuation and functional equation. This fact is of great importance for the theory of
elliptic curves. For example, the Birch and Swinnerton-Dyer conjecture equates the rank of
the Mordell-Weil group E(Q) to the order of vanishing of L(E, s) at s = 1:

rank(E(Q))
?
= ran(E/Q) := ords=1(L(E, s)). (4)

Equation (1) lends unconditional meaning to the right-hand side of (4).
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Another important consequence of modularity is the existence of a so-called modular
parametrisation—a non-constant map

ϕ : X0(N)−→E (5)

of algebraic curves defined over Q. Here X0(N)/Q stands for the classical modular curve
whose underlying Riemann surface

X0(N)(C) = Γ0(N)\(H ∪ P1(Q)) (6)

is the quotient of the upper-half plane H = {z ∈ C, Im(z) > 0} by the Hecke congruence
subgroup of level N

Γ0(N) = {
(
a b
c d

)
: N | c} ⊂ SL2(Z),

suitably compactified by adding the finite set of cusps.
The fact that geometric modularity implies modularity ((5)⇒ (1)) is a direct consequence

of the theory of Eichler-Shimura. The reverse implication is more delicate, and follows from
Faltings’ proof of the Tate conjectures for abelian varieties over global fields.

The modular parametrisation in (5) allows the construction of a systematic supply of
algebraic points on E defined over certain abelian extensions of imaginary quadratic subfields
K of C. These are the classical Heegner points, which can be defined complex analytically
using (6) as

Pτ = ϕ([τ ]) ∈ E, (7)

where τ ∈ H∩K is imaginary quadratic. The theory of complex multiplication shows that Pτ
is defined over the maximal abelian extension Kab of K. Up to replacing E by an isogenous
elliptic curve if necessary, the underlying complex torus of E is C/Λf where

Λf = {2πi
∫
γ

f(z)dz, γ ∈ H1(X0(N),Z)},

and the Heegner point Pτ can be computed explicitly by the formula

Pτ = 2πi

∫ τ

∞
f(z)dz ∈ C/Λf . (8)

Heegner points are the main actors in the proof of the celebrated theorem of Gross-Zagier-
Kolyvagin, which establishes the following special case of the Birch and Swinnerton-Dyer
conjecture:

rank(E(Q)) = ran(E/Q) when ran(E/Q) ≤ 1.

1.2 Stark-Heegner points

Heegner points arise from (the image under ϕ of) certain distinguished 0-dimensional al-
gebraic cycles on modular curves—those supported on the moduli of elliptic curves with
complex multiplication. The theory of Stark-Heegner points represents an attempt to con-
struct algebraic points on elliptic curves—ideally, in settings that go well beyond what can
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be achieved through the theory of complex multiplication—by adapting the Heegner point
construction to distinguished higher-dimensional algebraic or topological cycles on appro-
priate “modular varieties”. The notion of “Stark-Heegner point” is still too fluid to admit
a clear-cut mathematical definition, but one can nonetheless distinguish two broad types of
approaches.

1.2.1 Topological constructions

These are completely conjectural analytic constructions of points on elliptic curves arising
from topological cycles on modular varieties. Some basic examples are the so-called ATR
cycles on Hilbert modular varieties [DL] and the “p-adic ATR cycles on Hp ×H” attached
to ideal classes of real quadratic orders [Da1].

1.2.2 Constructions via algebraic cycles

Given a variety V defined over Q, let CHj(V )(F ) denote the Chow group of codimen-
sion j algebraic cycles on V defined over a field (or Q-algebra) F modulo rational equiva-
lence, and let CHj(V )0(F ) denote the subgroup of null-homologous cycles. The assignments
F 7→ CHj(V )(F ) and F 7→ CHj(V )0(F ) are functors on Q-algebras, and there is a natu-
ral equivalence CH1(X0(N))0 = J0(N). The modular parametrisation ϕ of (5) can thus be
viewed as a natural transformation

ϕ : CH1(X0(N))0−→E. (9)

The modular parametrisation (5) can therefore be generalised by replacing X0(N) with a
variety V over Q of dimension d > 1, and CH1(X0(N))0 by CHj(V )0 for a suitable 0 ≤ j ≤ d.
Any element Π of the Chow group CHd+1−j(V × E)(Q) induces a natural transformation

ϕ : CHj(V )0−→E (10)

sending ∆ ∈ CHj(V )0(F ) to

ϕF (∆) := πE,∗(π
∗
V (∆̃) · Π̃), (11)

where πV and πE denote the natural projections from V ×E to V and E respectively. When
V is a modular variety (for instance, the universal object or a self-fold fiber product of the
universal object over a Shimura variety of PEL type), the natural transformation Φ is called
the modular parametrisation of E attached to the pair (V,Π).

Modular parametrisations of this type are most useful when CHj(V )0(Q̄) is equipped with
a systematic supply of special elements, arising for example from from Shimura subvarieties
of V . The images in E(Q̄) of such special elements under ϕQ̄ can be viewed as “higher-
dimensional” analogues of Heegner points: they are sometimes referred to, following the
terminology of [BDP], as Chow-Heegner points.

Chow-Heegner points have been studied in the following two settings:

3



1. The case where E is an elliptic curve with complex multiplication and V is a suitable
family of 2r-dimensional abelian varieties fibered over a modular curve [BDP]. The ex-
istence of modular parametrisation in this case relies on the Hodge or Tate conjectures
on algebraic cycles for the variety V ×E, and seems difficult to establish uncondition-
ally even though the modularity of E is a classical and relatively easy result dating
back to Deuring. This setting was described in a mini-course at the CRM in Barcelona
by the first speaker and Kartik Prasanna, and will only be touched upon briefly at the
AWS.

2. The case where E is a modular elliptic curve of conductor N and

V = X0(N)× Er × Er,

where Er is the rth Kuga Sato variety over a modular curve, obtained by desingular-
ising and compactifying the r-fold fiber product of the universal elliptic curve over an
affine modular curve. The fact that points of infinite order on E can be constructed
from certain diagonal cycles in CH1(V )0 when r = 0 was first observed by Shouwu
Zhang, and a more systematic study of cycles on V and the resulting points on E
has been undertaken more recently by the two speakers in collaboration with Igna-
cio Sols [DRS]. Chow-Heegner points arising from diagonal cycles on V are relatively
well-understood—for instance, their construction does not rely on unproven cases of
the Hodge or Tate conjectures. While diagonal cycles are too limited to bear a direct
relationship with the more mysterious cases of the Stark-Heegner point construction,
there is encouraging evidence that p-adic deformations of these cycles (more precisely,
of their images under p-adic étale Abel-Jacobi maps) could lead to new insights into
the Stark-Heegner points of [Da1].

2 The student project

The aim of the lectures delivered in the mornings by the authors at the Arizona Winter
School 2011 and of the afternoon student project is to make a careful study of rational
points on elliptic curves arising from null-homologous algebraic cycles in CH2(V )0, where
V = X0(N)×X0(N)×X0(N) as explained in Chapter 7 of [DR]. The reader is referred to
these notes for a more careful explanation of the necessary background, the precise definitions
and the notation employed below.

In particular, the following general questions will be considered:

1. The conception and implementation of efficient algorithms for calculating the modular
parametrisation

AJ : CH2(V )0(C)−→E(C)

by complex analytic means.

2. Producing tables of the Chow-Heegner points

Pr = AJ(∆), Pg,g,f
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arising in equations (7.6) and (7.7) of [DR], with the goal of generating conjectures
about their behaviour. These conjectures could focus on the precise relation between
Chow-Heegner points and special values of L-series in the spirit of the Gross-Zagier
formula, or on whether the Chow-Heegner points are well-behaved with respect to
congruences between modular forms.

Students are encouraged to get acquainted with the basic theory of elliptic curves, mod-
ular forms, and Heegner points sketched in Section 1 above by reading some of the many
manuscripts devoted to this topic (e.g. [Da2, Ch. I-IV] for the statements of the basic facts
with many proofs omitted, and [DS] [Sil, Ch. II], [Sh, Ch. V], and [St, Ch. III] for more
detailed expositions).

A treatment of Stark-Heegner points and Chow-Heegner points which is somewhat more
elaborate than Section 1 (but still written in the style of an executive summary with almost
no proofs or detailed calculations) can be found in [Da3].

Most of all, the notes of the course [DR] on Algebraic cycles and Stark-Heegner points
which are now available in the web site of the Arizona Winter School (particularly the first
seven chapters), although still quite rough and containing many inaccuracies, can serve as a
road map for what will be discussed during the AWS.

The exercises we propose below for the afternoon sessions have both a theoretical and
computational flavor and should be solved by the students in small groups, combining the
insights of those students with a stronger background on each of the several topics we will
be touching, with the assistance of those students who are more computationally oriented.
Since many of the exercises include numerical calculations on the computer, we encourage
all students to bring their laptop with them and to acquire some familiarity with symbolic
algebra software like

• Magma (http://magma.maths.usyd.edu.au/magma),

• Pari-GP (http://pari.math.u-bordeaux.fr), or

• Sage (www.sagemath.org).

The first requires a license, while the second and third can be freely downloaded from
the respective web sites.

2.1 Warm-up: classical Heegner points

On Saturday afternoon we shall begin by briefly discussing the following classical questions,
which should serve as source of motivation and inspiration for the main student project, to
which we will quickly move.

(1) Familiarise yourself with Cremona’s tables of elliptic curves [Cr] of small conductor,
which are available on the web.

(2) Write a short program (in MAGMA, PARI, SAGE or any other language) which takes
as input
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• An elliptic curve E over Q, in the form of a vector [a1, a2, a3, a4, a6] of coefficients
following the standard conventions of the Cremona tables;

• a (fundamental, or not) negative discriminant D,

and returns as output a vector of h = h(D) complex points on E(HD) corresponding
to the Heegner points attached to the discriminant D. Here h(D) is the class number
of D and HD is the ring class field attached to this discriminant. (So that, for example,
HD is the Hilbert class field of K = Q(

√
D) when D is fundamental.)

(3) Explain how you would go about recognizing the complex points that your program
computes as algebraic points.

(4) Test your program on a few elliptic curves of conductor ≤ 100 taken from Cremona’s
tables, and for the values D = −3, −4, −7, −11, and −23. (Or any other values that
strike your fancy.)

(5) In the special cases where h(D) = 1, when is the Heegner point you compute of infinite
order? Explain how what you observe is consistent with the Gross-Zagier formula.

(6) In the case where N = pq is a product of two distinct primes modulo which D is not
a quadratic residue, how would you go about calculating a point on E(Q(

√
D) using

the Heegner point program you have written?

2.2 Working tools

The numerical approach we propose towards the computation of Chow-Heegner points arising
from diagonal cycles on triple products of modular curves requires a plethora of working tools,
most of them very classical, which need to be understood in detail and, in many cases, to
be efficiently implemented.

For this reason, we propose below a series of tasks or mini-projects, to be assigned and
developed separately in small groups. These projects are arranged in no particular order:
rather than being part of a chronological sequence, they each develop an aspect that will be
needed to understand (both from a theoretical and practical point of view) the calculation
of Chow-Heegner points. In particular, discussions and expositions of the progress made by
each of the groups is highly encouraged during the afternoon sessions. The final project will
be the reunion of each of the pieces and can not be understood without all of them.

This also means that every time you implement any of the algorithms suggested below,
you should discuss with the groups working on the other projects which is the most suit-
able way of introducing your input, as they will probably have to use some of yours, and
conversely.

As a way of example, let us all agree (unless you discuss and suggest anything better)
that all meromorphic differential forms on the classical modular curve X = X0(N) that we
shall be considering are given as

ωf = f(q)
dq

q
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where f(q) =
∑

n≥n0
anq

n is a formal Laurent series in the variable q such that the function

H = {τ ∈ C : Im(τ) > 0} → C τ 7→
∑
n≥n0

ane
2πinτ

is absolutely convergent and yields an holomorphic function on H.
Finally, questions below labelled with one star (?) are considered basic steps towards

the final implementation of the whole algorithm. Those labelled as (? ? ?) are the main
computational goal of each of the projects A, B and C.

(A) The geometry of modular curves: cusps and modular units. Let N ≥ 1 be a
positive integer and let Γ0(N) denote the usual congruence subgroup of level N . Let
Y0(N) ⊂ X0(N) be the classical (affine and complete, respectively) modular curves
attached to this group.

(a) (?) Find a complete system of representatives in P1(Q) of the set Γ0(N)\P1(Q)
of cusps of X0(N).

(b) Define the group WN ⊆ Aut(X0(N)) of Atkin-Lehner involutions of X0(N). Is it
always true that WN = Aut(X0(N))?

(c) Does WN leave the set of cusps invariant? If yes, describe the action of WN on
this set. Does Aut(X0(N)) always leave the set of cusps invariant?

(d) (?) Let q = q(τ) := e2πiτ . The classical eta function on H is η(q) = q1/24
∏

n>0(1−
qn). Explain its basic properties concerning convergence, meromorphy, zeros and
poles.

(e) Study the behavior of η(q) under Moebius transformations and find in what ways
the function η(q) can be manipulated in order to give rise to well-defined mero-
morphic modular forms of even weight k ∈ 2Z on X0(N). Implement this on the
computer.

(f) Define Uη ⊆ O(Y0(N))× ⊆ Q(X0(N))× to be the subgroup of those rational
functions constructed in the previous point. What can you say about the first
inclusion?

(g) (???) Given a divisor D =
∑
nx ·x supported at the cusps, can you find a u ∈ Uη

such that div(u) = D? Such a function is called a modular unit. Write a program
to construct u given D.

(B) The Betti (co)homology of modular curves: modular symbols. Let N ≥ 1
be a positive integer and let Γ0(N) denote the usual congruence subgroup of level N .
Let Y0(N) ⊂ X0(N) be the classical (affine and complete, respectively) modular curves
attached to this group. Let Y := X0(N) \ {∞}.

(a) (?) Describe the relationship between the first homology groups of Y0(N), Y and
X0(N).
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(b) (?) Define modular symbols with respect to Γ0(N), establish their basic properties
and compute some examples with any of the above software packages. You may
wish to familiarise yourself with the extensive library of software for calculating
with modular symbols that are already in the public domain, and can be found,
notably, on William Stein’s web page.

(c) Describe H1(X0(N),Z) in terms of the group Γ0(N)\Div0(P1(Q)) of modular
symbols.

(d) (?) Describe H1(X0(N),Z) as a quotient of the group Γ0(N). Make this descrip-
tion computable on the computer: given γ ∈ Γ0(N), compute a modular symbol
mγ such that mγ = [γ] ∈ H1(X0(N),Z). And conversely: given a modular symbol
mγ ∈ H1(X0(N),Z) find an element γ ∈ Γ0(N) such that mγ = [γ].

(e) (?) Given a modular form f ∈ S2(Γ0(N)), let ωf = f(q)dq
q

its associated regular

differential 1-form on X0(N). Define what is the line integral of ωf along a
path c ∈ H1(X0(N),Z) and study its basic properties, particularly those related
to the dependence of this integral on the various choices made. Implement its
computation and study how the various choices can be optimized in order to
make it more efficient.

(f) (?) Define what does it mean for an element γ ∈ H1(X0(N),C) to be Poincaré
dual to ωf and implement its computation.

(g) Implement an algorithm with takes as input a modular form f ∈ S2(Γ0(N)) with
integral fourier coefficients and outputs the lattice Λf of the elliptic curve Ef
associated to f via the Eichler-Shimura construction. Compute several examples.

(h) (? ? ?) What is the answer to the questions in (e) when we replace ωf by an
arbitrary meromorphic differential form η of the second kind on X0(N)? How can
one explictly write down meromorphic (non-holomorphic) 1-forms of the second
kind on X0(N)? Implement all this.

(C) Applications of the theorem of Riemann-Roch.

Let X be a smooth projective curve over the field Q of rational numbers and let
Y = X \ {∞} for some point ∞ ∈ X(Q). Let X̃

π−→X denote the universal covering
of X.

(a) DefineH1
dR(Y ) and ofH1

dR(X) in terms of differential forms of the second kind. Use

Riemann-Roch to prove that there is a natural isomorphism ϕ : H1
dR(Y )

∼−→Ω1(Y )
dO(Y )

.

(b) (?) Implement the map ϕ when X = X0(N) and ∞ is the cusp at infinity.

(c) (?) Describe the Poincaré pairing on H1
dR(X) and prove its basic properties. Im-

plement it when X = X0(N).

(d) Let ω ∈ Ω1(X) and η ∈ Ω1(Y ) be regular differential forms on X and Y , respec-
tively. Show that the form η gives rise to a differential of the second kind on
X. Let Fη denote the primitive of that form in X̃. Use Riemann-Roch to prove
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that there exists a holomorphic differential form α on Y such that ω · Fη − α is
holomorphic on X̃ \ π−1(∞) and has at worst a pole of order 1 at any point in
the fiber at ∞.

(e) (? ? ?) Implement (d) on the computer when X = X0(N).

2.3 Chow-Heegner points

This is last stage of the student project, in which most of the basic ingredients needed for
the computation of the Chow-Heegner points Pf1,f2,f3 introduced in [DR, Ch. 7] should be
already available. However, having the ingredients is not enough: we still must discuss the
recipe.

Share all the background accumulated during the ellaboration of projects A, B, C together
with the material explained in our lectures and use it to discuss the following questions.

• Write down diagram (5.4) of [DR, Ch. 5] in the particular setting of the variety
V = X0(N)×X0(N)×X0(N) and an elliptic curve E/Q of conductor N , recalling the
definition of the four maps involved in the diagram.

• Given three modular eigenforms f1, f2, f3 ∈ S2(N) of weight 2 and square-free level N ,
describe what we mean precisely by the point Pf1,f2,f3 .

• Design a recipe for the numerical computation of the Chow-Heegner points Pf1,f2,f3
when

1. N = 37

2. f1, f2 and f3 are newforms and have integral coefficients.

3. f1, f2 and f3 are newforms but do not necessarily have integral coefficients.

3 Other exercises

The following is a short list of exercises which we find interesting and that we encourage the
reader to solve, though most probably won’t be discussed because of lack of time.

3.1 A concrete example: the curve X0(37)

Once all tasks posed in the previous section have been accomplished and shared with all
the participants, make a complete and detailed study of the modular curve X = X0(37)/Q,
particularizing all the answers and computations that were obtained there to this curve.

Once this is done, use all this information to work on the following further questions:

1. Compute an equation for X0(37) over Q.

2. Compute X0(37)(Q).
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3. Compute an equation and the basic arithmetic data of the two curves Ef and Eg of
level 37, and equations of the modular parametrisations

πf : X−→Ef , πg : X−→Eg.

4. Let K denote the canonical divisor on X. Compute the image on Ef and on Eg of the
divisor K − 2∞.
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