Stark-Heegner points Arizona Winter School 2011

Henri Darmon and Victor Rotger

October 23, 2011

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=f_{E}=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right) \text { with } L(E, s)=L(f, s) .
$$

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=f_{E}=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right) \text { with } L(E, s)=L(f, s)
$$

Then $\quad E(\mathbb{C}) \sim \mathbb{C} / \Lambda_{f}, \quad \Lambda_{f}=2 \pi i \int_{H_{1}\left(X_{0}(N), \mathbb{Z}\right)} f(z) d z$.

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=f_{E}=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right) \text { with } L(E, s)=L(f, s)
$$

Then $\quad E(\mathbb{C}) \sim \mathbb{C} / \Lambda_{f}, \quad \Lambda_{f}=2 \pi i \int_{H_{1}\left(X_{0}(N), \mathbb{Z}\right)} f(z) d z$.
The modular parametrization is

$$
\begin{array}{ccc}
\varphi: X_{0}(N) & \longrightarrow & E \\
\infty & \mapsto & 0 \\
\tau & \mapsto & P_{\tau}:=2 \pi i \int_{\infty}^{\tau} f(z) d z \\
& & =\sum_{n \geq 1} \frac{a_{n}}{n} e^{2 \pi i n \cdot \tau}
\end{array}
$$

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.
If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $\quad P_{\tau} \in E\left(K^{a b}\right)$.

Classical Heegner points

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.
If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $\quad P_{\tau} \in E\left(K^{a b}\right)$.
Put
$\mathcal{O}_{\tau}=\left\{\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): N \mid c, \gamma \cdot\binom{\tau}{1}=\lambda\binom{\tau}{1}\right\} \subset M_{0}(N) \subseteq M_{2}(\mathbb{Z})$.

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.
If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $\quad P_{\tau} \in E\left(K^{a b}\right)$.
Put
$\mathcal{O}_{\tau}=\left\{\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): N \mid c, \gamma \cdot\binom{\tau}{1}=\lambda\binom{\tau}{1}\right\} \subset \mathrm{M}_{0}(N) \subseteq M_{2}(\mathbb{Z})$.
\mathcal{O}_{τ} is an order in K in which all $p \mid N$ split or ramify, and

$$
P_{\tau} \in E\left(H_{\mathcal{O}_{\tau}}\right)
$$

where $\operatorname{Gal}\left(H_{\mathcal{O}_{\tau}} / K\right) \simeq \operatorname{Pic}\left(\mathcal{O}_{\tau}\right)$.
$\Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.
$\Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.
Theorem (Gross-Zagier)
$L^{\prime}(E / K, 1) / \Omega_{E} \doteq$ height $\left(P_{K}\right)$ where $P_{K}=\operatorname{Tr}_{H_{\mathcal{O}_{\tau}} / K}\left(P_{\tau}\right)$.
Corollary
$P_{K} \in E(K)$ has infinite order if and only if $L^{\prime}(E / K, 1) \neq 0$.

Heegner hypothesis: all $p \mid N$ split in K.

$\Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.

Theorem (Gross-Zagier)

$L^{\prime}(E / K, 1) / \Omega_{E} \doteq$ height $\left(P_{K}\right)$ where $P_{K}=\operatorname{Tr}_{H_{\mathcal{O}_{\tau}} / K}\left(P_{\tau}\right)$.

Corollary

$P_{K} \in E(K)$ has infinite order if and only if $L^{\prime}(E / K, 1) \neq 0$.

Theorem (+Kolyvagin)
 If $r_{a n}(E / K)=1, B S D$ holds true for E / K.

Heegner hypothesis: all $p \mid N$ split in K.

$\Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.

Theorem (Gross-Zagier)

$$
L^{\prime}(E / K, 1) / \Omega_{E} \doteq \text { height }\left(P_{K}\right) \text { where } P_{K}=\operatorname{Tr}_{H_{O_{\tau}} / K}\left(P_{\tau}\right)
$$

Corollary

$P_{K} \in E(K)$ has infinite order if and only if $L^{\prime}(E / K, 1) \neq 0$.

```
Theorem (+Kolyvagin) If \(r_{a n}(E / K)=1, B S D\) holds true for \(E / K\).
```

Corollary If $r_{a n}(E / \mathbb{Q}) \leq 1, B S D$ holds true for E / \mathbb{Q}.

Heegner points on Shimura curves

What about BSD when ord ${ }_{s=1} L(E / K, s)$ is odd but K fails to satisfy H.H.?

Heegner points on Shimura curves

What about BSD when ord ${ }_{s=1} L(E / K, s)$ is odd but K fails to satisfy H.H.?

Assume $\left(D_{K}, N\right)=1$. Factor $N=N^{+} \cdot N^{-}$into split and inert primes.

What about BSD when ord ${ }_{s=1} L(E / K, s)$ is odd but K fails to satisfy H.H.?

Assume $\left(D_{K}, N\right)=1$. Factor $N=N^{+} \cdot N^{-}$into split and inert primes.

If $N^{-}=p_{1} \cdot \ldots \cdot p_{2 r} \Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.

What about BSD when ord ${ }_{s=1} L(E / K, s)$ is odd but K fails to satisfy H.H.?

Assume $\left(D_{K}, N\right)=1$. Factor $N=N^{+} . N^{-}$into split and inert primes.

If $N^{-}=p_{1} \cdot \ldots \cdot p_{2 r} \Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.
Replace $X_{0}(N)$ by Shimura curve $X_{0}^{N^{-}}\left(N^{+}\right)$made from the quaternion algebra ramified at N^{-}.

What about BSD when ord ${ }_{s=1} L(E / K, s)$ is odd but K fails to satisfy H.H.?

Assume $\left(D_{K}, N\right)=1$. Factor $N=N^{+} . N^{-}$into split and inert primes.

If $N^{-}=p_{1} \cdot \ldots \cdot p_{2 r} \Rightarrow \operatorname{ord}_{s=1} L(E / K, s)$ is odd.
Replace $X_{0}(N)$ by Shimura curve $X_{0}^{N^{-}}\left(N^{+}\right)$made from the quaternion algebra ramified at N^{-}.

We still have $\varphi: X_{0}^{N^{-}}\left(N^{+}\right) \rightarrow E,[\tau] \mapsto P_{\tau} \in E\left(H_{\mathcal{O}_{\tau}}\right)$. All works nicely thanks to Zhang.

The theory of Heegner points provides a good approach for constructing points on $E_{\mathbb{Q}}$, rational over abelian extensions H of imaginary quadratic fields K.

The theory of Heegner points provides a good approach for constructing points on $E_{\mathbb{Q}}$, rational over abelian extensions H of imaginary quadratic fields K.

This method allows to prove BSD for the base change of $E_{/ \mathbb{Q}}$ to subfields of H provided the analytic rank is morally 0 or 1 .

The theory of Heegner points provides a good approach for constructing points on $E_{/ \mathbb{Q}}$, rational over abelian extensions H of imaginary quadratic fields K.

This method allows to prove BSD for the base change of $E_{/ \mathbb{Q}}$ to subfields of H provided the analytic rank is morally 0 or 1 .

And generalizes well to modular elliptic curves $E_{/ F}$ over a totally real number field F and totally imaginary quadratic K / F provided $[F: \mathbb{Q}]$ is odd or $\exists \wp \| \mathfrak{N}$.

The theory of Heegner points provides a good approach for constructing points on $E_{/ \mathbb{Q}}$, rational over abelian extensions H of imaginary quadratic fields K.

This method allows to prove BSD for the base change of $E_{/ \mathbb{Q}}$ to subfields of H provided the analytic rank is morally 0 or 1 .

And generalizes well to modular elliptic curves $E_{/ F}$ over a totally real number field F and totally imaginary quadratic K / F provided $[F: \mathbb{Q}]$ is odd or $\exists \wp \| \mathfrak{N}$.

What can we say if any of these fails? How do we construct points on E over other fields?

The jacobian of X is $\operatorname{Pic}_{0}(X)=\operatorname{Div}_{0}(X) / \sim_{\text {rat }}$.

The jacobian of X is $\operatorname{Pic}_{0}(X)=\operatorname{Div}_{0}(X) / \sim_{\text {rat }}$.
The Abel-Jacobi map is

$$
\begin{array}{ccc}
E(\mathbb{C})=\operatorname{Pic}_{0}(E)(\mathbb{C}) & \stackrel{A J}{\longrightarrow} & \mathbb{C} / \Lambda_{E} \\
P & \mapsto & \int_{0}^{P} \omega_{E},
\end{array}
$$

The jacobian of X is $\operatorname{Pic}_{0}(X)=\operatorname{Div}_{0}(X) / \sim_{\text {rat }}$.
The Abel-Jacobi map is

$$
\begin{array}{ccc}
E(\mathbb{C})=\operatorname{Pic}_{0}(E)(\mathbb{C}) & \stackrel{A J}{\longrightarrow} & \mathbb{C} / \Lambda_{E} \\
P & \mapsto & \int_{0}^{P} \omega_{E},
\end{array}
$$

and

$$
\begin{aligned}
& \operatorname{Pic}_{0}(X)(\mathbb{C}) \stackrel{A J}{\longrightarrow}\left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}) \simeq \mathbb{C}^{g} / \Lambda \\
& D \mapsto \\
& \int_{D} \mapsto\left(\int_{D} \omega_{1}, \ldots, \int_{D} \omega_{g}\right) \\
& H^{1,0}:=H^{0}\left(X_{\mathbb{C}}, \Omega^{1}\right) .
\end{aligned}
$$

For $X=X_{0}(N)$ the modular parametrization factors as:

$$
\begin{array}{ccc}
\varphi: X & \stackrel{i}{\hookrightarrow} & \operatorname{Pic}_{0}(X) \\
P & \stackrel{\pi_{f}}{\mapsto} & E \\
\mapsto & (D)=(P-\infty) & \stackrel{\pi}{\mapsto} \\
\pi_{f}(D)=\varphi(P)
\end{array}
$$

Heegner points as divisors on the curve

For $X=X_{0}(N)$ the modular parametrization factors as:

$$
\begin{array}{cccc}
\varphi: X & \stackrel{i}{\hookrightarrow} & \operatorname{Pic}_{0}(X) & \stackrel{\pi_{f}}{\rightarrow}
\end{array} \quad E
$$

Over the complex numbers, via AJ, this looks

$$
\begin{aligned}
\varphi_{\mathbb{C}}: \Gamma_{0}(N) \backslash \mathcal{H}^{*} & \stackrel{i}{\hookrightarrow} & \left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}) & \xrightarrow{\pi_{f}} \mathbb{C} / \Lambda_{f} \\
{[\tau] } & \mapsto & \left(\int_{\infty}^{\tau} f \frac{d q}{q}, \ldots, \int_{\infty}^{\tau} f_{g} \frac{d q}{q}\right) \mapsto & \int_{\infty}^{\tau} f(q) d q / q
\end{aligned}
$$

For $X=X_{0}(N)$ the modular parametrization factors as:

$$
\begin{array}{ccccc}
\varphi: X & \stackrel{i}{\hookrightarrow} & \operatorname{Pic}_{0}(X) & \stackrel{\pi_{f}}{\rightarrow} & E \\
P & \mapsto & \mapsto)=(P-\infty) & \mapsto & \pi_{f}(D)=\varphi(P)
\end{array}
$$

Over the complex numbers, via AJ, this looks

$$
\begin{array}{rlcc}
\varphi_{\mathbb{C}}: \Gamma_{0}(N) \backslash \mathcal{H}^{*} & \stackrel{i}{\hookrightarrow} & \left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}) & \stackrel{\pi_{f}}{\rightarrow} \mathbb{C} / \Lambda_{f} \\
{[\tau]} & \mapsto & \left(\int_{\infty}^{\tau} f \frac{d q}{q}, \ldots, \int_{\infty}^{\tau} f_{g} \frac{d q}{q}\right) \mapsto & \int_{\infty}^{\tau} f(q) d q / q
\end{array}
$$

For non-split Shimura curves $X_{0}^{N^{-}}\left(N^{+}\right)$there is no choice of a base point $\infty \in X(\mathbb{Q})$ and it is more natural to simply consider

$$
\operatorname{Pic}_{0}(X) \xrightarrow{\pi_{f}} E
$$

Cohomology in higher dimension

Replace Shimura curve X by a variety $V_{/ F}$, $\operatorname{char}(F)=0$, of dimension $d \geq 1$.

Cohomology in higher dimension

Replace Shimura curve X by a variety $V_{/ F}$, $\operatorname{char}(F)=0$, of dimension $d \geq 1$.

The algebraic de Rham cohomology groups

$$
H_{d R}^{n}(V), \quad 0 \leq n \leq 2 d
$$

are F-vector spaces of finite dimension with:

Cohomology in higher dimension

Replace Shimura curve X by a variety $V_{/ F}, \operatorname{char}(F)=0$, of dimension $d \geq 1$.

The algebraic de Rham cohomology groups

$$
H_{d R}^{n}(V), \quad 0 \leq n \leq 2 d
$$

are F-vector spaces of finite dimension with:

- The Hodge filtration, $\mathrm{Fil}^{0}=H_{d R}^{n}(V) \supseteq \operatorname{Fil}^{1} \supseteq \ldots \supseteq \operatorname{Fil}^{N}=\{0\}$.

Replace Shimura curve X by a variety $V_{/ F}, \operatorname{char}(F)=0$, of dimension $d \geq 1$.

The algebraic de Rham cohomology groups

$$
H_{d R}^{n}(V), \quad 0 \leq n \leq 2 d
$$

are F-vector spaces of finite dimension with:

- The Hodge filtration, $\mathrm{Fil}^{0}=H_{d R}^{n}(V) \supseteq \mathrm{Fil}^{1} \supseteq \ldots \supseteq \mathrm{Fil}^{N}=\{0\}$.
- The alternate Poincaré pairing, $\langle\rangle:, H_{d R}^{n}(V) \times H_{d R}^{2 d-n}(V) \rightarrow F$.

Replace Shimura curve X by a variety $V_{/ F}, \operatorname{char}(F)=0$, of dimension $d \geq 1$.

The algebraic de Rham cohomology groups

$$
H_{d R}^{n}(V), \quad 0 \leq n \leq 2 d
$$

are F-vector spaces of finite dimension with:

- The Hodge filtration, $\mathrm{Fil}^{0}=H_{d R}^{n}(V) \supseteq \mathrm{Fil}^{1} \supseteq \ldots \supseteq \mathrm{Fil}^{N}=\{0\}$.
- The alternate Poincaré pairing, $\langle\rangle:, H_{d R}^{n}(V) \times H_{d R}^{2 d-n}(V) \rightarrow F$.

For curves: $\mathrm{Fil}^{0}=H_{d R}^{1}(X)=\Omega^{\prime \prime}(X) / d F(X) \supset \operatorname{Fil}^{1}=\Omega^{1}(X)$.

Comparison theorems

For any prime p, the p-adic étale cohomology groups

$$
H_{e t}^{n}\left(V_{\bar{F}}, \mathbb{Q}_{p}\right), \quad 0 \leq n \leq 2 d,
$$

are finite $\operatorname{dim}^{\prime} \mid \mathbb{Q}_{p}$-vector spaces with an action of $\operatorname{Gal}(\bar{F} / F)$.

For any prime p, the p-adic étale cohomology groups

$$
H_{e t}^{n}\left(V_{\bar{F}}, \mathbb{Q}_{p}\right), \quad 0 \leq n \leq 2 d,
$$

are finite dim'l \mathbb{Q}_{p}-vector spaces with an action of $\operatorname{Gal}(\bar{F} / F)$.
$F=\mathbb{Q}_{p}: \quad$ If V / \mathbb{Q}_{p} has good reduction,
$D_{c r i s}\left(H_{e t}^{i}\left(V_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)\right):=\left(H_{e t}^{i}\left(V_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right) \otimes B_{c r i s}\right)^{G_{\mathbb{Q}_{p}}} \simeq H_{d R}^{i}\left(V / \mathbb{Q}_{p}\right)$.

For any prime p, the p-adic étale cohomology groups

$$
H_{e t}^{n}\left(V_{\bar{F}}, \mathbb{Q}_{p}\right), \quad 0 \leq n \leq 2 d,
$$

are finite dim'l \mathbb{Q}_{p}-vector spaces with an action of $\operatorname{Gal}(\bar{F} / F)$.
$F=\mathbb{Q}_{p}: \quad$ If V / \mathbb{Q}_{p} has good reduction,
$D_{c r i s}\left(H_{e t}^{i}\left(V_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)\right):=\left(H_{e t}^{i}\left(V_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right) \otimes B_{c r i s}\right)^{G_{\mathbb{Q}_{p}}} \simeq H_{d R}^{i}\left(V / \mathbb{Q}_{p}\right)$.
$F=\mathbb{C}: \quad H_{d R}^{n}(V / \mathbb{C})=H_{\text {Betti }}^{n}(V(\mathbb{C}), \mathbb{Z}) \otimes \mathbb{C} \simeq \oplus_{i+j=n} H^{i, j}(V / \mathbb{C})$

$$
\left\langle\omega_{1}, \omega_{2}\right\rangle=\frac{1}{(2 \pi i)^{d}} \int_{V(\mathbb{C})} \omega_{1} \wedge \omega_{2}
$$

Replace $\operatorname{Pic}_{0}(X)=\mathrm{CH}^{1}(X)_{0}$ by the Chow group $\mathrm{CH}^{c}(V)_{0}$:

Cycles in higher dimension

Replace $\operatorname{Pic}_{0}(X)=\mathrm{CH}^{1}(X)_{0}$ by the Chow group $\mathrm{CH}^{\mathrm{C}}(V)_{0}$:
$\mathrm{CH}^{c}(V)=\{$ Algebraic Cycles Δ of codimension c on $V\} / \sim_{\text {rat }}$

Replace $\operatorname{Pic}_{0}(X)=\mathrm{CH}^{1}(X)_{0}$ by the Chow group $\mathrm{CH}^{c}(V)_{0}$:
$\mathrm{CH}^{c}(V)=\{$ Algebraic Cycles Δ of codimension c on $V\} / \sim_{\text {rat }}$

$$
\begin{array}{rc}
0 \rightarrow \mathrm{CH}^{c}(V)_{0} \rightarrow \mathrm{CH}^{c}(V) & \xrightarrow{c l} H_{2 d-2 c}(V(\mathbb{C}), \mathbb{C}) \simeq H_{d R}^{2 c}\left(V_{\mathbb{C}}\right), \\
\Delta & \mapsto
\end{array}
$$

Replace $\operatorname{Pic}_{0}(X)=\mathrm{CH}^{1}(X)_{0}$ by the Chow group $\mathrm{CH}^{c}(V)_{0}$:
$\mathrm{CH}^{c}(V)=\{$ Algebraic Cycles Δ of codimension c on $V\} / \sim_{\text {rat }}$

$$
\begin{array}{rc}
0 \rightarrow \mathrm{CH}^{c}(V)_{0} \rightarrow \mathrm{CH}^{c}(V) & \xrightarrow{c} H_{2 d-2 c}(V(\mathbb{C}), \mathbb{C}) \\
\Delta & \mapsto
\end{array} H_{d R}^{2 c}\left(V_{\mathbb{C}}\right),
$$

$$
\mathbb{Q} \otimes \mathrm{CH}^{c}\left(V_{\mathbb{C}}\right) \xrightarrow{c} H^{c, c}\left(V_{\mathbb{C}}\right) \cap H^{2 c}(V(\mathbb{C}), \mathbb{Q}) .
$$

Replace $\operatorname{Pic}_{0}(X)=\mathrm{CH}^{1}(X)_{0}$ by the Chow group $\mathrm{CH}^{\mathrm{C}}(V)_{0}$:
$\mathrm{CH}^{c}(V)=\{$ Algebraic Cycles Δ of codimension c on $V\} / \sim_{\text {rat }}$

$$
\begin{array}{rc}
0 \rightarrow \mathrm{CH}^{c}(V)_{0} \rightarrow \mathrm{CH}^{c}(V) & \xrightarrow{c l} H_{2 d-2 c}(V(\mathbb{C}), \mathbb{C}) \\
\Delta & \mapsto
\end{array} H_{d R}^{2 c}\left(V_{\mathbb{C}}\right),
$$

$\mathbb{Q} \otimes \mathrm{CH}^{c}\left(V_{\mathbb{C}}\right) \xrightarrow{c l} H^{c, c}\left(V_{\mathbb{C}}\right) \cap H^{2 c}(V(\mathbb{C}), \mathbb{Q})$.
Hodge conjecture: cl is surjective.

Higher dimension

The complex Abel-Jacobi map

$$
\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{1}(X)_{0} \longrightarrow\left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}), \quad D \mapsto \int_{D}
$$

generalizes:

The complex Abel-Jacobi map

$$
\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{1}(X)_{0} \longrightarrow\left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}), \quad D \mapsto \int_{D}
$$

generalizes:

$$
\begin{aligned}
& J^{c}(V)=\frac{\mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)^{\vee}}{H_{2 d-2 c+1}(V, \mathbb{Z})} \\
& \mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)=\oplus_{i \geq d-c+1} H^{i, 2 d-i}(V)
\end{aligned}
$$

The complex Abel-Jacobi map

$$
\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{1}(X)_{0} \longrightarrow\left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}), \quad D \mapsto \int_{D}
$$

generalizes:

$$
\begin{aligned}
& J^{c}(V)=\frac{\mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)^{\vee}}{H_{2 d-2 c+1}(V, \mathbb{Z})} \\
& \mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)=\oplus_{i \geq d-c+1} H^{i, 2 d-i}(V) . \\
& \mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{C}(V)_{0}(\mathbb{C}) \longrightarrow J^{c}(V), \quad \Delta \mapsto \int_{\partial^{-1}} \Delta .
\end{aligned}
$$

The complex Abel-Jacobi map

$$
\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{1}(X)_{0} \longrightarrow\left(H^{1,0}\right)^{\vee} / H_{1}(X, \mathbb{Z}), \quad D \mapsto \int_{D}
$$

generalizes:
$J^{c}(V)=\frac{\text { Fil }^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)^{\vee}}{H_{2 d-2 c+1}(V, \mathbb{Z})}$,
$\mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)=\oplus_{i \geq d-c+1} H^{i, 2 d-i}(V)$.
$\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{C}(V)_{0}(\mathbb{C}) \longrightarrow J^{C}(V), \quad \Delta \mapsto \int_{\partial^{-1} \Delta}$.
$\tilde{\Delta}=\partial^{-1} \Delta$ is a $2(d-c)+1$-differentiable chain on the real manifold $V(\mathbb{C})$ with boundary Δ.

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Tate: there is $\Pi^{?} \in \mathrm{CH}^{d+1-c}(V \times E)(\mathbb{Q})$ inducing

$$
\begin{array}{ccc}
\mathrm{CH}^{c}(V)_{0}(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{c}(V) \\
\pi^{?} \downarrow & & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & \mathbb{C} / \Lambda_{E}
\end{array}
$$

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Tate: there is $\Pi^{?} \in \mathrm{CH}^{d+1-c}(V \times E)(\mathbb{Q})$ inducing

$$
\begin{array}{ccc}
\mathrm{CH}^{c}(V)_{0}(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{c}(V) \\
\pi^{?} \downarrow & & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

$\Delta \in \mathrm{CH}^{C}(V)_{0}$

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Tate: there is $\Pi^{?} \in \mathrm{CH}^{d+1-c}(V \times E)(\mathbb{Q})$ inducing

$$
\begin{array}{ccc}
\mathrm{CH}^{c}(V)_{0}(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{c}(V) \\
\pi^{?} \downarrow & & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & \mathbb{C} / \Lambda_{E}
\end{array}
$$

$\Delta \in \mathrm{CH}^{c}(V)_{0} \mapsto \pi_{V}^{*} \Delta$

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Tate: there is $\Pi^{?} \in \mathrm{CH}^{d+1-c}(V \times E)(\mathbb{Q})$ inducing

$$
\begin{array}{ccc}
\mathrm{CH}^{c}(V)_{0}(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{C}(V) \\
\pi^{?} \downarrow & & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

$\Delta \in \mathrm{CH}^{c}(V)_{0} \mapsto \pi_{V}^{*} \Delta \mapsto \pi_{V}^{*} \Delta \cdot \Pi^{?}$

Want that for some $c \geq 1$:

$$
V_{p}(E)=H_{e t}^{1}\left(E_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1) \stackrel{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}{\longrightarrow} H_{e t}^{2 d-2 c+1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(d+1-c) .
$$

Tate: there is $\Pi^{?} \in \mathrm{CH}^{d+1-c}(V \times E)(\mathbb{Q})$ inducing

$$
\begin{array}{ccc}
\mathrm{CH}^{c}(V)_{0}(\mathbb{C}) & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{C}(V) \\
\pi^{?} \downarrow & & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) & \xrightarrow{\text { AJ }_{C}} & \mathbb{C} / \Lambda_{E}
\end{array}
$$

$\Delta \in \mathrm{CH}^{c}(V)_{0} \mapsto \pi_{V}^{*} \Delta \mapsto \pi_{V}^{*} \Delta \cdot \Pi^{?} \mapsto P_{\Delta}:=\pi_{E, *}\left(\pi_{V}^{*} \Delta \cdot \Pi^{?}\right) \in E$

Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles

$$
\Delta \in \mathrm{CH}^{c}(V)_{0}(K)
$$

over our favorite number field.

Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles

$$
\Delta \in \mathrm{CH}^{\mathrm{C}}(V)_{0}(K)
$$

over our favorite number field.

Like Heegner divisors $D=([\tau]-\infty) \in \mathrm{CH}^{1}\left(X_{0}(N)\right)_{0}\left(H_{\mathcal{O}_{\tau}}\right)$.

Chow-Heegner points

Thus also want "non-trivial looking" null-homologous cycles

$$
\Delta \in \mathrm{CH}^{C}(V)_{0}(K)
$$

over our favorite number field.

Like Heegner divisors $D=([\tau]-\infty) \in \mathrm{CH}^{1}\left(X_{0}(N)\right)_{0}\left(H_{\mathcal{O}_{\tau}}\right)$.

Shimura varieties associated to a reductive group $G_{/ \mathbb{Q}}$ host special cycles.

Example 1: modular and Shimura curves

$$
E_{/ \mathbb{Q}} \text { of conductor } N \text { and } V=X_{0}(N) \text { or } X_{0}^{N^{-}}\left(N^{+}\right) \text {. }
$$

$E_{/ \mathbb{Q}}$ of conductor N and $V=X_{0}(N)$ or $X_{0}^{N^{-}}\left(N^{+}\right)$.
For $c=1, V_{p}(E) \stackrel{\text { Gal }(\overline{\mathbb{Q}} / \mathbb{Q})}{\simeq} V_{f} \hookrightarrow V_{p}\left(J_{0}(N)\right) \simeq H_{e t}^{1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1)$.
$E_{/ \mathbb{Q}}$ of conductor N and $V=X_{0}(N)$ or $X_{0}^{N^{-}}\left(N^{+}\right)$.
For $c=1, V_{p}(E) \stackrel{\text { Gal(}(\mathbb{Q} / \mathbb{Q})}{\simeq} V_{f} \hookrightarrow V_{p}\left(J_{0}(N)\right) \simeq H_{e t}^{1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1)$.
Tate proved by Faltings: there is a Hecke correspondence $\Pi \in \mathrm{CH}^{1}(V \times E)(\mathbb{Q})$ inducing
$E_{/ \mathbb{Q}}$ of conductor N and $V=X_{0}(N)$ or $X_{0}^{N^{-}}\left(N^{+}\right)$.
For $c=1, V_{p}(E) \stackrel{\text { Gal(}(\mathbb{Q} / \mathbb{Q})}{\simeq} V_{f} \hookrightarrow V_{p}\left(J_{0}(N)\right) \simeq H_{e t}^{1}\left(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_{p}\right)(1)$.
Tate proved by Faltings: there is a Hecke correspondence $\Pi \in \mathrm{CH}^{1}(V \times E)(\mathbb{Q}) \quad$ inducing

$$
\begin{array}{cc}
\mathrm{CH}^{1}(V)_{0}(\mathbb{C}) \xrightarrow{\mathrm{AJ}_{\mathrm{C}}} \operatorname{Jac}(V) \\
\pi \downarrow & \downarrow \pi_{\mathbb{C}} \\
E(\mathbb{C}) \xrightarrow{\mathrm{AJ}_{\mathrm{C}}} \mathbb{C} / \Lambda_{E}, \\
D=([\tau]-\infty) \in \mathrm{CH}^{1}(V)_{0} \mapsto P_{D} \in E .
\end{array}
$$

Example 2: Kuga-Sato varieties

The universal elliptic curve is

$$
\pi: V_{1} \rightarrow X_{1}(N)
$$

with generic fiber $\pi^{*}(x)=E_{x}$, an elliptic curve with a N-torsion point t_{x}.

Example 2: Kuga-Sato varieties

The universal elliptic curve is

$$
\pi: V_{1} \rightarrow X_{1}(N)
$$

with generic fiber $\pi^{*}(x)=E_{x}$, an elliptic curve with a N-torsion point t_{x}.

$$
V_{1}(\mathbb{C})=\mathbb{Z}^{2} \rtimes \Gamma_{1}(N) \backslash \mathbb{C} \times \mathcal{H}^{*}
$$

Example 2: Kuga-Sato varieties

The universal elliptic curve is

$$
\pi: V_{1} \rightarrow X_{1}(N)
$$

with generic fiber $\pi^{*}(x)=E_{x}$, an elliptic curve with a N-torsion point t_{x}.

$$
V_{1}(\mathbb{C})=\mathbb{Z}^{2} \rtimes \Gamma_{1}(N) \backslash \mathbb{C} \times \mathcal{H}^{*}=\{(P,(E, t))\}, \text { where } P \in E(\mathbb{C})
$$

Example 2: Kuga-Sato varieties

The universal elliptic curve is

$$
\pi: V_{1} \rightarrow X_{1}(N)
$$

with generic fiber $\pi^{*}(x)=E_{x}$, an elliptic curve with a N-torsion point t_{x}.

$$
V_{1}(\mathbb{C})=\mathbb{Z}^{2} \rtimes \Gamma_{1}(N) \backslash \mathbb{C} \times \mathcal{H}^{*}=\{(P,(E, t))\}, \text { where } P \in E(\mathbb{C})
$$

For $r \geq 1$,

$$
V_{r}(\mathbb{C})=\mathbb{Z}^{2 r} \rtimes \Gamma_{1}(N) \backslash \mathbb{C}^{r} \times \mathcal{H}^{*}
$$

Example 2: Kuga-Sato varieties

The universal elliptic curve is

$$
\pi: V_{1} \rightarrow X_{1}(N)
$$

with generic fiber $\pi^{*}(x)=E_{x}$, an elliptic curve with a N-torsion point t_{x}.

$$
V_{1}(\mathbb{C})=\mathbb{Z}^{2} \rtimes \Gamma_{1}(N) \backslash \mathbb{C} \times \mathcal{H}^{*}=\{(P,(E, t))\}, \text { where } P \in E(\mathbb{C})
$$

For $r \geq 1$,

$$
V_{r}(\mathbb{C})=\mathbb{Z}^{2 r} \rtimes \Gamma_{1}(N) \backslash \mathbb{C}^{r} \times \mathcal{H}^{*}=\left\{\left(P_{1}, \ldots, P_{r},(E, t)\right)\right\}
$$

Example 2: Kuga-Sato varieties

The approach of M. Bertolini, H. Darmon and K. Prasanna:

$$
S_{r+2}\left(\Gamma_{1}(N)\right) \simeq \varepsilon H_{p a r}^{r+1,0}\left(V_{r}\right), \quad f(q) \mapsto f(q) d z_{1} \ldots d z_{r} d q / q
$$

The approach of M. Bertolini, H. Darmon and K. Prasanna:
$S_{r+2}\left(\Gamma_{1}(N)\right) \simeq \varepsilon H_{p a r}^{r+1,0}\left(V_{r}\right), \quad f(q) \mapsto f(q) d z_{1} \ldots d z_{r} d q / q$.
Let E / \mathbb{Q} be an elliptic curve with CM by $K=\mathbb{Q}(\sqrt{-D})$.
Say $D=11,19,43,67,163$, so $\mathbb{Q} \otimes E(\mathbb{Q})=\mathbb{Q} \cdot P_{E}$.

The approach of M. Bertolini, H. Darmon and K. Prasanna:
$S_{r+2}\left(\Gamma_{1}(N)\right) \simeq \varepsilon H_{p a r}^{r+1,0}\left(V_{r}\right), \quad f(q) \mapsto f(q) d z_{1} \ldots d z_{r} d q / q$.
Let E / \mathbb{Q} be an elliptic curve with CM by $K=\mathbb{Q}(\sqrt{-D})$.
Say $D=11,19,43,67,163$, so $\mathbb{Q} \otimes E(\mathbb{Q})=\mathbb{Q} \cdot P_{E}$.

There is a projector $\epsilon \in \operatorname{Corr}\left(E^{r+1}\right)=\mathrm{CH}^{r+1}\left(E^{r+1} \times E^{r+1}\right)$:

The approach of M. Bertolini, H. Darmon and K. Prasanna:
$S_{r+2}\left(\Gamma_{1}(N)\right) \simeq \varepsilon H_{p a r}^{r+1,0}\left(V_{r}\right), \quad f(q) \mapsto f(q) d z_{1} \ldots d z_{r} d q / q$.

Let E / \mathbb{Q} be an elliptic curve with CM by $K=\mathbb{Q}(\sqrt{-D})$.
Say $D=11,19,43,67,163$, so $\mathbb{Q} \otimes E(\mathbb{Q})=\mathbb{Q} \cdot P_{E}$.

There is a projector $\epsilon \in \operatorname{Corr}\left(E^{r+1}\right)=\mathrm{CH}^{r+1}\left(E^{r+1} \times E^{r+1}\right)$:
$\epsilon H_{e t}^{r+1}\left(E_{\overline{\mathbb{Q}}}^{r+1}\right)(r+1) \xrightarrow{G_{K}} \varepsilon H_{e t}^{r+1}\left(V_{r, \overline{\mathbb{Q}}}\right)(r+1)$

The approach of M. Bertolini, H. Darmon and K. Prasanna:
$S_{r+2}\left(\Gamma_{1}(N)\right) \simeq \varepsilon H_{p a r}^{r+1,0}\left(V_{r}\right), \quad f(q) \mapsto f(q) d z_{1} \ldots d z_{r} d q / q$.

Let E / \mathbb{Q} be an elliptic curve with CM by $K=\mathbb{Q}(\sqrt{-D})$.
Say $D=11,19,43,67,163$, so $\mathbb{Q} \otimes E(\mathbb{Q})=\mathbb{Q} \cdot P_{E}$.

There is a projector $\epsilon \in \operatorname{Corr}\left(E^{r+1}\right)=\mathrm{CH}^{r+1}\left(E^{r+1} \times E^{r+1}\right)$:
$\epsilon H_{e t}^{r+1}\left(E_{\overline{\mathbb{Q}}}^{r+1}\right)(r+1) \stackrel{G_{K}}{\hookrightarrow} \varepsilon H_{e t}^{r+1}\left(V_{r, \overline{\mathbb{Q}}}\right)(r+1)$
$\stackrel{\text { Tate }}{\Rightarrow}$?

$$
\Pi^{?} \in \mathrm{CH}^{r+1}\left(E^{r+1} \times V_{r}\right)(K)
$$

Example 2: Kuga-Sato varieties

$$
X_{r}:=E^{r} \times V_{r}
$$

$$
\begin{aligned}
X_{r}:= & E^{r} \times V_{r}, \\
& \Pi^{?} \in \mathrm{CH}^{r+1}\left(E^{r+1} \times V_{r}\right)(K)
\end{aligned}
$$

$$
\begin{aligned}
X_{r}:= & E^{r} \times V_{r}, \\
& \Pi^{?} \in \mathrm{CH}^{r+1}\left(E^{r+1} \times V_{r}\right)(K)=\mathrm{CH}^{r+1}\left(E \times X_{r}\right)(K) ;
\end{aligned}
$$

$$
\begin{aligned}
& X_{r}:=E^{r} \times V_{r}, \\
& \Pi^{?} \in \mathrm{CH}^{r+1}\left(E^{r+1} \times V_{r}\right)(K)=\mathrm{CH}^{r+1}\left(E \times X_{r}\right)(K) ; \\
& \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}(\mathbb{C}) \\
& \pi^{?} \downarrow \\
& \\
& E=\mathrm{CH}^{1}(E)_{0}(\mathbb{C}) \\
& \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} \quad \mathbb{C} / \Lambda_{E} .
\end{aligned}
$$

$$
\begin{aligned}
& X_{r}:=E^{r} \times V_{r}, \\
& \Pi^{?} \in \mathrm{CH}^{r+1}\left(E^{r+1} \times V_{r}\right)(K)=\mathrm{CH}^{r+1}\left(E \times X_{r}\right)(K) ; \\
& \mathrm{CH}^{r+1}\left(X_{r}\right)_{0}(\mathbb{C}) \\
& \pi^{?} \downarrow \\
& \\
& E=\mathrm{CH}_{\mathbb{C}}(E)_{0}(\mathbb{C}) \\
& J^{r+1}\left(X_{r}\right) \\
& \\
& \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} \\
& \downarrow \pi_{\mathbb{C}} \\
& \mathbb{C} / \Lambda_{E}
\end{aligned}
$$

X_{r} has dimension $2 r+1$ and hosts Heegner cycles of codimension $r+1$.

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.
$P_{r}^{?}:=\pi^{?}\left(\Delta_{r}\right) \stackrel{?}{\in} E(K)$, the Chow-Heegner point.

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.
$P_{r}^{?}:=\pi^{?}\left(\Delta_{r}\right) \stackrel{?}{\in} E(K)$, the Chow-Heegner point.
$P_{r, \mathbb{C}}:=\pi_{\mathbb{C}} \mathrm{AJ}_{\mathbb{C}}\left(\Delta_{r}\right)$

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.
$P_{r}^{?}:=\pi^{?}\left(\Delta_{r}\right) \stackrel{?}{\in} E(K)$, the Chow-Heegner point.
$P_{r, \mathbb{C}}:=\pi_{\mathbb{C}} \mathrm{AJ}_{\mathbb{C}}\left(\Delta_{r}\right)=\Omega_{E}^{-r} \frac{(2 \pi i)^{r+1}}{(\tau-\bar{\tau})^{r}} \int_{i \infty}^{\tau}(z-\bar{\tau})^{r} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E}$

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.
$P_{r}^{?}:=\pi^{?}\left(\Delta_{r}\right) \stackrel{?}{\in} E(K)$, the Chow-Heegner point.

$$
P_{r, \mathbb{C}}:=\pi_{\mathbb{C}} \mathrm{AJ}_{\mathbb{C}}\left(\Delta_{r}\right)=\Omega_{E}^{-r} \frac{(2 \pi i)^{r+1}}{(\tau-\bar{\tau})^{r}} \int_{i \infty}^{\tau}(z-\bar{\tau})^{r} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E}
$$

Numerically found that for odd r :

$$
P_{r, \mathbb{C}}=\sqrt{-D} \cdot m_{r} \cdot P_{E}, \quad m_{r}^{2}=\frac{2 r!(2 \pi \sqrt{D})^{r}}{\Omega_{E}^{2 r+1}} L\left(\psi_{E}^{2 r+1}, r+1\right) \in \mathbb{Z}
$$

Like $\Delta_{r}=\operatorname{diag}\left(E^{r}\right) \subset E^{r} \times E^{r} \subset E^{r} \times V_{r}$.
$P_{r}^{?}:=\pi^{?}\left(\Delta_{r}\right) \stackrel{?}{\in} E(K)$, the Chow-Heegner point.
$P_{r, \mathbb{C}}:=\pi_{\mathbb{C}} \mathrm{AJ}_{\mathbb{C}}\left(\Delta_{r}\right)=\Omega_{E}^{-r} \frac{(2 \pi i)^{r+1}}{(\tau-\bar{\tau})^{r}} \int_{i \infty}^{\tau}(z-\bar{\tau})^{r} f_{E}(z) d z \in \mathbb{C} / \Lambda_{E}$
Numerically found that for odd r :
$P_{r, \mathbb{C}}=\sqrt{-D} \cdot m_{r} \cdot P_{E}, \quad m_{r}^{2}=\frac{2 r!(2 \pi \sqrt{D})^{r}}{\Omega_{E}^{2 r+1}} L\left(\psi_{E}^{2 r+1}, r+1\right) \in \mathbb{Z}$.

And proved a p-adic étale version of this.

Let $E_{/ \mathbb{Q}}$ be an arbitrary elliptic curve, of conductor N.

Let $E_{/ \mathbb{Q}}$ be an arbitrary elliptic curve, of conductor N.
Let $V_{/ \mathbb{Q}}=V_{r} \times V_{r} \times X, \quad X=X_{0}(N)$ or $X_{0}^{N^{-}}\left(N^{+}\right)$.

Let $E_{/ \mathbb{Q}}$ be an arbitrary elliptic curve, of conductor N.

$$
\text { Let } V_{/ \mathbb{Q}}=V_{r} \times V_{r} \times X, \quad X=X_{0}(N) \text { or } X_{0}^{N^{-}}\left(N^{+}\right)
$$

$\Pi=\operatorname{diag}\left(V_{r}\right) \times \operatorname{diag}(X) \in \mathrm{CH}^{r+2}\left(V_{r}^{2} \times X^{2}\right)=\mathrm{CH}^{r+2}(V \times X)$.

Let $E_{/ \mathbb{Q}}$ be an arbitrary elliptic curve, of conductor N.

$$
\text { Let } V_{/ \mathbb{Q}}=V_{r} \times V_{r} \times X, \quad X=X_{0}(N) \text { or } X_{0}^{N^{-}}\left(N^{+}\right)
$$

$\Pi=\operatorname{diag}\left(V_{r}\right) \times \operatorname{diag}(X) \in \operatorname{CH}^{r+2}\left(V_{r}^{2} \times X^{2}\right)=\mathrm{CH}^{r+2}(V \times X)$.
It yields

$$
\begin{array}{cll}
\pi: \mathrm{CH}^{r+2}(V)_{0} & \rightarrow \operatorname{Pic}_{0}(X) \quad \xrightarrow{\pi_{f}} E \\
\Delta & \mapsto & P_{\Delta}=\sum_{(P, P, Q) \in \Delta} \pi_{f}(Q)
\end{array}
$$

$\operatorname{dim}(V)=2 r+3$ and there are several natural choices for

$$
\Delta \in \mathrm{CH}^{r+2}(V)_{0}
$$

$\operatorname{dim}(V)=2 r+3$ and there are several natural choices for

$$
\Delta \in \mathrm{CH}^{r+2}(V)_{0}
$$

For $r=0$, the most natural one is Gross-Kudla-Schoen's
$\operatorname{dim}(V)=2 r+3$ and there are several natural choices for

$$
\Delta \in \mathrm{CH}^{r+2}(V)_{0}
$$

For $r=0$, the most natural one is Gross-Kudla-Schoen's
$\Delta=\Delta_{123}-\Delta_{12}-\Delta_{23}-\Delta_{13}+\Delta_{1}+\Delta_{2}+\Delta_{3} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
$\operatorname{dim}(V)=2 r+3$ and there are several natural choices for

$$
\Delta \in \mathrm{CH}^{r+2}(V)_{0}
$$

For $r=0$, the most natural one is Gross-Kudla-Schoen's
$\Delta=\Delta_{123}-\Delta_{12}-\Delta_{23}-\Delta_{13}+\Delta_{1}+\Delta_{2}+\Delta_{3} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
For $r \geq 1, \Delta_{r}:=(\epsilon, \epsilon, \mathrm{Id})\left(\Delta_{\{1,2,3\}}-\Delta_{\{1,2\}}\right) \in \mathrm{CH}^{r+2}(V)_{0}$

Theorem (Darmon-R-Sols) $P_{r}:=P_{\Delta_{r}} \in E(\mathbb{Q})$ satisfies

$$
P_{r}=n_{r} P_{0}, \quad n_{r} \in \mathbb{Z}
$$

with $P_{0}=\pi_{E, *}\left(K_{X}\right)$, where $K_{X} \in \operatorname{Pic}(X)$ is the canonical divisor.

Theorem (Darmon-R-Sols) $P_{r}:=P_{\Delta_{r}} \in E(\mathbb{Q})$ satisfies

$$
P_{r}=n_{r} P_{0}, \quad n_{r} \in \mathbb{Z}
$$

with $P_{0}=\pi_{E, *}\left(K_{X}\right)$, where $K_{X} \in \operatorname{Pic}(X)$ is the canonical divisor.

In addition,

$$
P_{0}=\sum P_{g}
$$

where g runs through the set of eigenforms on X.

Theorem (Darmon-R-Sols) $P_{r}:=P_{\Delta_{r}} \in E(\mathbb{Q})$ satisfies

$$
P_{r}=n_{r} P_{0}, \quad n_{r} \in \mathbb{Z}
$$

with $P_{0}=\pi_{E, *}\left(K_{X}\right)$, where $K_{X} \in \operatorname{Pic}(X)$ is the canonical divisor.

In addition,

$$
P_{0}=\sum P_{g}
$$

where g runs through the set of eigenforms on X.
Theorem (Yuan-Zhang-Zhang) $P_{g} \neq 0$ in $\mathbb{Q} \otimes E(\mathbb{Q}) \Leftrightarrow$

$$
\operatorname{ord}_{s=1} L(E, s)=1 \text { and } L\left(E \otimes \operatorname{sym}^{2}(g), 2\right) \neq 0
$$

