Iterated integrals, diagonal cycles and rational points on elliptic curves

Victor Rotger

November 2, 2011

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}(N) \text { with } L(E, s)=L(f, s) .
$$

The modular parametrization is

$$
\begin{aligned}
\varphi: \quad X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathfrak{H}^{*} & \longrightarrow \\
& \longmapsto \quad P_{\tau}:=2 \pi i \int_{\infty}^{\tau} f(z) d z \\
& =\sum_{n \geq 1} \frac{a_{n}}{n} e^{2 \pi i n \cdot \tau}
\end{aligned}
$$

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.
If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $\quad P_{\tau} \in E\left(K^{a b}\right)$.

- Bertolini, Darmon, Greenberg replaced \mathfrak{H}^{*} by the p-adic upper half-plane, using Coleman p-adic path integrals.
- For $E_{/ \mathbb{Q}}, K$ real quadratic where p is inert and H / K ring class field, Darmon constructs points on $E\left(\mathbb{C}_{p}\right)$ which should be H -rational. Bertolini, Dasgupta, Greenberg, Longo, R., Seveso, Vigni complete the conjectural picture.
- For $E_{/ F}$ modular over a totally real F, Darmon and Logan use a similar cohomological formalism to construct points on ring class fields H / K of ATR quadratic extensions K / F. Gartner generalizes to any K / F provided the signs of the functional equations match, but is not effective.
- The universal covering of $X_{0}(N)$ is
$\mathbf{P}\left(X_{0}(N) ; \infty\right)=\left\{\gamma:[0,1] \longrightarrow X_{0}(N), \gamma(0)=\infty\right\} /$ homotopy.
- The modular parametrization factors through

$$
\begin{array}{ccc}
\varphi: \quad X_{0}(N)=\pi_{1}\left(X_{0}(N)\right) \backslash \mathbf{P}\left(X_{0}(N)\right) & \longrightarrow \quad J_{0}(N) \rightarrow E \\
\gamma: \infty \sim \tau & \mapsto & P_{\tau}:=\int_{\gamma} \omega_{f},
\end{array}
$$

as $\pi_{1}\left(X_{0}(N)\right) \rightarrow \mathbb{C}, \gamma \mapsto \int_{\gamma} \omega_{f}$ factors through $H_{1}\left(X_{0}(N), \mathbb{Z}\right)$.

- Chen's iterated integrals may give rise to anabelian modular parametrizations of points in $E(\mathbb{C})$.

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The iterated integral attached to a tuple of smooth 1 -forms $\left(\omega_{1}, \ldots, \omega_{n}\right)$ on Y is the functional
$\gamma \mapsto \int_{\gamma} \omega_{1} \cdot \omega_{2} \cdots \cdot \omega_{n}:=\int_{\Delta}\left(\gamma^{*} \omega_{1}\right)\left(t_{1}\right)\left(\gamma^{*} \omega_{2}\right)\left(t_{2}\right) \cdots\left(\gamma^{*} \omega_{n}\right)\left(t_{n}\right)$,
where $\Delta=\left\{0 \leq t_{n} \leq t_{n-1} \leq \cdots \leq t_{1} \leq 1\right\}$.
- When $n=2: \int_{\gamma} \omega \cdot \eta=\int_{\tilde{\gamma}} \omega F_{\eta}, \quad$ for F_{η} primitive of η on \tilde{Y}.
- A linear combination of iterated integrals which is homotopy invariant yields $J: \mathbf{P}(Y ; 0) \longrightarrow \mathbb{C}$.
- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^{1}(X)$ and $\eta \in \Omega^{1}(Y)$, with a pole at ∞.
- Let $\alpha=\alpha_{\omega, \eta} \in \Omega^{1}(Y)$ such that $\omega F_{\eta}-\alpha_{\omega, \eta}$ on \tilde{Y} has log poles over ∞.
- $J_{\omega, \eta}:=\int \omega \cdot \eta-\alpha_{\omega, \eta}$ is homotopy-invariant.
- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level M, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(M, N_{E}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.
- Define $P_{g, f}:=\sum_{i=1}^{t} \int_{\gamma_{f}} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \cdot \omega_{g, i}-2 \alpha_{i} \in E(\mathbb{C})$.
- The point is independent of the choice of base point 0 , path γ_{f} or basis of $H^{1}(X)[g]$.
- With Michael Daub, Henri Darmon and Sam Lichtenstein we have an algorithm to compute $P_{g, f}$:
- Given $N \geq 1$, define c_{N} the smallest integer for which there are

$$
\gamma_{j}=\left(\begin{array}{c}
a \\
c N \\
c
\end{array}\right) \in \Gamma_{0}(N), \quad c \leq c_{N}
$$

such that $H_{1}(X, \mathbb{Z})=\left\langle\ldots,\left[\gamma_{j}\right], \ldots\right\rangle_{\mathbb{Z}}$.

- The number n_{D} of Fourier coefficients required to compute $P_{g, f}$ to a given number D of digits of accuracy is

$$
n_{D}=O\left(\max \left\{N \cdot \mathrm{c}_{N} \cdot\left(D+N^{11 \sigma_{0}(N)+2}\right), \mathrm{c}_{N}^{2} \cdot N^{2 \sigma_{0}(N)+2}\right\}\right)
$$

- We represent the 1 -forms $\eta_{g, i}$ as differentials of the $2 n d$ kind: $\sum u_{i} \cdot \omega_{g, i}$ where u_{i} are modular units given as eta products.

E	$P_{g e n}$	g	n	$P_{g, f, n}$
37a1	$(0,-1)$	1	1	$-6 P$
43a1	$(0,-1)$	1	1	$4 P$
53a1	$(0,-1)$	1	1	$-2 P$
57a1	$(2,1)$	1	1	$\frac{4}{3} P$
		2	1	$-\frac{16}{3} P$
		3	1	$-4 P$
58a1	$(0,-1)$	1	1	$4 P$
		2	1	0
			2	$4 P$
77a1	$(2,3)$	1	1	$\frac{12}{5} P$
		2	1	$-\frac{4}{3} P$
		3	1	$\frac{4}{3} P$
		4	1	$-\frac{12}{5} P$
79a1	$(0,0)$	1	1	$-4 P$
82a1	$(0,0)$	1	1	0
		2	3	$2 P$
		2	1	$2 P$

83a1	$(0,0)$	1	1	0
			2	$2 P$
88a1	$(2,-2)$	1	1	0
		2	1	0
		3	2	$8 P$
		3	1	0
			2	$8 P$
91a1	$(0,0)$	1	1	$2 P$
		2	1	$2 P$
		3	1	$4 P$
91b1	$(-1,3)$	0	1	0
		2	1	0
		3	1	0
92b1	$(1,1)$	1	1	0
		2	1	0
99a1	$(2,0)$	1	1	$-\frac{2}{3} P$
		2	1	0
		3	1	$\frac{2}{3} P$

Connection with diagonal cycles

- Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are Q-rational.
- $P_{g, f}$ is the Chow-Heegner point associated with the [$g, g, f]$-isotypical component of Gross-Kudla-Schoen's diagonal cycle

$$
\begin{gathered}
\Delta=\{(x, x, x), x \in X\}- \\
-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
+\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \subset X^{3},
\end{gathered}
$$

a null-homologous cycle of codimension two in X^{3} :

- Putting
$\Pi=\{(x, x, y, y)\} \subset X^{4}, P_{g, f}=\pi_{f, *}\left(\Pi \cdot \pi_{123}^{*}(\Delta[g, g, f])\right)$.

Connection with diagonal cycles

In fact, for any divisor

$$
T \in \frac{\operatorname{Pic}(X \times X)}{\pi_{1}^{*} \operatorname{Pic}(X) \oplus \pi_{2}^{*} \operatorname{Pic}(X)} \simeq \operatorname{End}\left(J_{0}(N)\right)
$$

we obtain a point

$$
P_{T}=\Pi \cdot \pi_{123}^{*}\left(\Delta_{T}\right) \quad \text { for a suitable } \Delta_{T} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}
$$

This gives rise to a new modular parametrization of points $\operatorname{End}\left(J_{0}(N)\right) \rightarrow \operatorname{Hodge}\left(X_{0}(N)^{2}\right) \rightarrow J_{0}(N)(\mathbb{Q}) \xrightarrow{\pi_{t, *}} E(\mathbb{Q}), \quad T \mapsto P_{T}$,
which is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-equivariant for its natural extension to $\overline{\mathbb{Q}}$.

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

$$
L(f, g, h ; s)=L\left(V_{f} \otimes V_{g} \otimes V_{h} ; s\right)=\prod_{p} L^{(p)}\left(f, g, h ; p^{-s}\right)^{-1}
$$

For $p \nmid N=\operatorname{lcm}\left(N_{f}, N_{g}, N_{h}\right)$, the Euler factor $L^{(p)}(f, g, h ; T)$ is

$$
\left(1-\alpha_{f} \alpha_{g} \alpha_{h} T\right) \cdot\left(1-\alpha_{f} \alpha_{g} \beta_{h} T\right) \cdot \ldots \cdot\left(1-\beta_{f} \beta_{g} \beta_{h} T\right) .
$$

- The completed L-function satisfies

$$
\Lambda(f, g, h ; s)=\prod_{p \mid N \infty} \varepsilon_{p}(f, g, h) \cdot \Lambda(f, g, h ; k+\ell+m-2-s)
$$

- $\varepsilon_{\infty}(f, g, h)= \begin{cases}-1 & \text { if }(k, \ell, m) \text { are balanced. } \\ +1 & \text { if }(k, \ell, m) \text { are unbalanced } .\end{cases}$

Combining our result with Yuan-Zhang-Zhang

Theorem 2. Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N_{E} and g a newform of level M.

Assume $\varepsilon_{p}(g, g, f)=+1$ at the primes $p \mid N=\operatorname{lcm}\left(M, N_{E}\right)$.
Then the module of points

$$
\underline{P}_{g, f}:=\sum_{d \left\lvert\, \frac{N}{N_{E}}\right.} \pi_{f(d)}\left\{P_{T}, T \in \operatorname{End}^{0}\left(J_{0}(N)\right)[g]\right\} \subseteq E(\mathbb{Q})
$$

is nonzero if and only if:
i. $L(f, 1)=0$,
ii. $L^{\prime}(f, 1) \neq 0$, and
iii. $L\left(f \otimes \operatorname{Sym}^{2}\left(g^{\sigma}\right), 2\right) \neq 0$ for all $\sigma: K_{g} \longrightarrow \mathbb{C}$.

- $E=37 a, g=37 b . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion. $\varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$.
- $E=58 a$ and $g=29 a . \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g, f, 2}:=\pi_{f}\left(P_{T_{g} \cdot T_{2}}\right)$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d$. While $\varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right)=0$.
- Set $Y=X_{0}(N) \backslash\{\infty\}, \Gamma=\pi_{1}(Y ; 0)$.
- $I=\langle\gamma-1\rangle$ augmentation ideal of $\mathbb{Z}[\Gamma]: \quad \mathbb{Z}[\Gamma] / I=\mathbb{Z}$.
- $I / I^{2}=\Gamma_{a b}=H_{1}(Y, \mathbb{Z})=H_{1}(X, \mathbb{Z})$.
- $I^{2} / \beta^{3}=\left(\Gamma_{a b} \otimes \Gamma_{a b}\right), \gamma_{1} \otimes \gamma_{2} \mapsto\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)$.
- $\{\mathbf{P}(Y ; 0) \rightarrow \mathbb{C}$ of length $\leq n\} \simeq \operatorname{Hom}\left(I / I^{n+1}, \mathbb{C}\right)$.
- The exact sequence $0 \longrightarrow I^{2} / \beta \longrightarrow I / \beta^{3} \longrightarrow I / R^{2} \longrightarrow 0$ becomes $0 \longrightarrow H_{B}^{1}(Y) \longrightarrow M_{B} \longrightarrow H_{B}^{1}(Y)^{\otimes 2} \longrightarrow 0$.
- The first and third groups are the Betti realizations of a pure motive defined over \mathbb{Q}.
- The complexification of both is equipped with a Hodge filtration: both are pure Hodge structures.
- $M_{B}=\operatorname{Hom}\left(I / R^{3}, \mathbb{C}\right)=\{J: \mathbf{P}(Y ; 0) \rightarrow \mathbb{C}$ of length $\leq 2\}$ underlies a mixed Hodge structure and should arise from a mixed motive over \mathbb{Q}.
- M_{B} yields an extension class $\kappa \in \operatorname{Ext}_{\mathrm{MHS}}^{1}\left(H_{\mathrm{B}}^{1}(X)^{\otimes 2}, H_{\mathrm{B}}^{1}(X)\right)$.
- Any $\xi: \mathbb{Z}(-1) \longrightarrow H_{B}^{1}(X)^{\otimes 2}$ yields

- $\varphi: \operatorname{Ext}_{M H S}^{1}\left(\mathbb{Z}(-1), H_{B}^{1}(X)\right)=\frac{H_{d R}^{1}(X / \mathbb{C})}{\Omega^{1}(X(\mathbb{C}))+H_{B}^{1}(X)} \simeq J_{0}(N)(\mathbb{C})$.
- $\xi_{g}: 1 \mapsto \mathrm{cl}\left(T_{g}\right) \in H_{B}^{2}\left(X^{2}\right) \xrightarrow{\text { Kunneth }} H_{B}^{1}(X)^{\otimes 2}$,
- $P_{g}:=\varphi\left(\xi_{g}\right) \in J_{0}(N), \quad P_{g, f}:=\pi_{f}\left(P_{g}\right)$.

The complex Abel-Jacobi map for curves

$$
\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{1}(X)_{0} \longrightarrow \Omega_{X}^{1, \mathrm{v}} / H_{1}(X, \mathbb{Z}), \quad D \mapsto \int_{D}
$$

generalizes to varieties V of higher dimension d and null-homologous cycles of codimension c :
$\mathrm{AJ}_{\mathbb{C}}: \mathrm{CH}^{c}(V)_{0} \rightarrow J^{C}(V)=\frac{\mathrm{Fil}^{d-c+1} H_{d R}^{2 d-2 c+1}\left(V_{\mathbb{C}}\right)^{\vee}}{H_{2 d-2 c+1}(V, \mathbb{Z})}, \Delta \mapsto \int_{\tilde{\Delta}}$,
where $\tilde{\Delta}$ is a $2(d-c)+1$-differentiable chain on the real manifold $V(\mathbb{C})$ with boundary Δ.

$$
\left.\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{2}\left(X^{3}\right)
\end{array}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)}
$$

$\Delta \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} \mapsto \pi_{123}^{*} \Delta \mapsto \pi_{123}^{*} \Delta \cdot \Pi \mapsto P_{\Delta}:=\pi_{E, *}\left(\pi_{123}^{*} \Delta \cdot \Pi\right) \in E$.

Theorem. (Darmon-R.-Sols) In $E(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q}$:

$$
\mathrm{AJ}_{\mathbb{C}}\left(\Delta_{G K S}\right)\left(\operatorname{cl}\left(T_{g}\right) \wedge \omega_{f}\right)=\int_{\gamma_{f}}\left(\sum_{i=1}^{t} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \omega_{g, i}-2 \alpha_{i}\right)
$$

- The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\mathrm{AJ}_{p}: \mathrm{CH}^{r+2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee}
$$

- $\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \mathrm{AJ}_{p}\left(\Delta_{G K S}\right)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)$.

Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open of

$$
X_{0}(N)\left(\mathbb{C}_{p}\right) \backslash \operatorname{red}^{-1}\left(X\left(\overline{\mathbb{F}}_{p}\right)_{s s}\right)
$$

and a lift of Frobenius. Let $\rho \in \Omega^{1}(\mathcal{W} \times \mathcal{W})$ such that $d \rho=P(\Phi)\left(\omega_{g} \otimes \omega_{f}\right)$ for a suitable polynomial P. Then

$$
\operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \otimes \omega_{g} \otimes \omega_{f}\right)=\left\langle\eta, P(\Phi)^{-1} \epsilon^{*} \rho\right\rangle_{X}
$$

where $\epsilon^{*}=\epsilon_{12}^{*}-\epsilon_{1}^{*}-\epsilon_{2}^{*}$, for $\epsilon_{12}, \epsilon_{1}, \epsilon_{2}: X \hookrightarrow X^{2}$.

