Modular endomorphism algebras

Modular forms: Arithmetic and Computation
June 3-8, 2007
Víctor Rotger
Universitat Politècnica de Catalunya

Let

$$
f=q+\sum_{n \geq 2} a_{n} q^{n}
$$

be a (non-CM) newform for $\Gamma_{1}(N)$ of weight two and character ε.

- $E_{f}=\mathbb{Q}\left(a_{2}, a_{3}, a_{4}, a_{5}, \ldots\right)$, a number field.
- $F_{f}=\mathbb{Q}\left(\left\{a_{p}^{2} / \varepsilon(p)\right\}: p \nmid N\right)$, a totally real subfield of E_{f}.
- $B_{f}=\oplus E_{f} \cdot \beta_{\chi}$ where χ are the inner-twists of f, a central simple algebra over F_{f}, with E_{f} as maximal subfield.

A Dirichlet character χ is an inner-twist of f if $\chi(p) a_{p}=\sigma\left(a_{p}\right)$ for all $p \nmid N$, for some $\sigma \in \operatorname{Hom}\left(E_{f}, \mathbb{C}\right)$.

CONJECTURE: There exist only finitely many isomorphism classes of algebras E_{f} and B_{f} of given degree over \mathbb{Q}.

Let A_{f} / \mathbb{Q} be the factor of $J_{1}(N)$ attached to f.
$-\operatorname{End}_{\mathbb{Q}}\left(A_{f}\right)$ is an order in E_{f}.

- $\operatorname{End}_{\overline{\mathbb{Q}}}\left(A_{f}\right)$ is an order in B_{f}.

CONJECTURE: For any $g \geq 1$, there exist only finitely many isomorphism classes of endomorphism rings $\operatorname{End}_{K}(A)$ of modular abelian varieties A / \mathbb{Q} of dimension g.

Here, K / \mathbb{Q} is an arbitrary algebraic extension.

For $g=1, \operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$ or $R \subset \mathbb{Q}(\sqrt{-d}), h(R)=1$.
$\ln g=2$: Let $A=E_{1} \times E_{2}$ with E_{1}, E_{2} elliptic curves over \mathbb{Q}.
$\operatorname{End}_{\mathbb{Q}}(A)= \begin{cases}\mathbb{Z} \times \mathbb{Z} & \text { if } E_{1}, E_{2} \text { are not isogenous } \\ M_{0}(N) & \text { if there is a cyclic isogeny of degree } N .\end{cases}$
Here, $M_{0}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{M}_{2}(\mathbb{Z}), N \mid c\right\}$.

Mazur: There are finitely many possibilities for $\operatorname{End}_{\mathbb{Q}}(A)$.

Let E / K be a \mathbb{Q}-curve completely defined over a quadratic K / \mathbb{Q}. Let $A=\operatorname{Res}_{K / \mathbb{Q}}(E)$.
$\operatorname{End}_{\mathbb{Q}}(A) \otimes \mathbb{Q}=\mathbb{Q}(\sqrt{ \pm d}), \quad d=d(E)=\min \left(\operatorname{deg} \Phi: E^{\sigma} \rightarrow E\right)$.

Conjecture: $d(E) \leq C$ for some constant $C \geq 1$.

AIM:

Focus on the case

$$
\begin{gathered}
E_{f} \nsubseteq B_{f} \\
\text { where } B_{f} \text { is a division algebra. }
\end{gathered}
$$

For a general newform $f \in S_{2}\left(\Gamma_{1}(N)\right)$ without CM (or an abelian variety A of GL_{2}-type over \mathbb{Q} without CM):

$$
\operatorname{End}_{\overline{\mathbb{Q}}}(A) \otimes \mathbb{Q} \simeq M_{n}(B) \text { where }
$$

- $B=E$ or a totally indefinite quaternion algebra over F.
- A is isogenous over $\overline{\mathbb{Q}}$ to A_{0}^{n}, where $A_{0} / \overline{\mathbb{Q}}$ is absolutely simple and $\operatorname{End}_{\overline{\mathbb{Q}}}\left(A_{0}\right) \otimes \mathbb{Q} \simeq B$: a building block.

We thus focus on abelian varieties A of GL_{2}-type over \mathbb{Q} such that:

- $\mathcal{O}=\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ is an order in a totally indefinite division quaternion algebra B over F

By the work of Khare, Wintenbeger and Kisin proving Serre's modularity Conjecture:

$$
A \sim A_{f} \text { for some newform } f \in S_{2}\left(\Gamma_{1}(N)\right), N \geq 1
$$

By the work of Ribet,

- There exists a (single) non-trivial inner-twist χ of f.
- $\varepsilon=1$ and $E=F(\sqrt{m})$ for $m \in F^{*} \backslash F^{* 2}$ totally positive.
- $\mathcal{O}=\operatorname{End}_{K}(A)$, where $K=\overline{\mathbb{Q}}^{\chi} \simeq \mathbb{Q}(\sqrt{-d}), d \geq 1$.
- $B \simeq\left(\frac{-d, m}{F}\right)$. Set $\mathfrak{D}=\wp_{1} \cdot \ldots \cdot \wp_{2 r}$ where $B \otimes F_{\wp_{i}} \nsim \mathrm{M}_{2}\left(F_{\wp_{i}}\right)$.

Question. Given E, B, K, does there exist a modular abelian variety A / \mathbb{Q} such that

- $\operatorname{End}_{\mathbb{Q}}(A) \otimes \mathbb{Q} \simeq E$
- $\operatorname{End}_{K}(A) \otimes \mathbb{Q} \simeq B$?

Or a normalized newform $f \in S_{2}\left(\Gamma_{1}(N)\right)$ with $E \simeq E_{f}, B \simeq B_{f}$ and $\chi=(\underline{K})$ as inner twist?

Numerical data

N	\mathfrak{D}	m	$\operatorname{disc}(K)$
675	6	2	-3
1568	6	3	-4
243	6	6	-3
2700	10	10	-3
1568	14	7	-4
3969	15	15	-7
5408	22	11	-4

Data for $N \leq 5500$ and $F=\mathbb{Q}$.

N	$[F: \mathbb{Q}]$	$\operatorname{disc}(F)$	\mathfrak{D}	$\mathrm{N}_{F / \mathbb{Q}}(m)$	$\operatorname{disc}(K)$
1089	2	5	$[9,11]$	11	-3
2592	2	33	$[2,3]$	27	-4
3872	2	5	$[4,11]$	11	-4
3872	2	5	$[4,11]$	55	-4
4356	2	5	$[5,11]$	55	-3
4761	2	41	$[2,5]$	10	-3
2187	3	81	$[3,17]$	51	-3
2187	3	81	$[3,8]$	24	-3
3969	3	321	$[3,3]$	81	-7
4563	3	1436	$[2,3]$	6	-3
3267	4	5725	$[9,11]$	11	-3
3267	4	13525	$[5,9]$	5	-3

Data for $N \leq 5500$ and $2 \leq[F: \mathbb{Q}] \leq 4$ (J. Quer).

Two approaches:

- Moduli interpretation in terms of Shimura varieties.
- Local methods: rigid analytic uniformization at $\wp \mid \mathfrak{D}$.
- Global methods: Descent.
- Brute force: Computation of equations.
- Galois representation on $T_{\wp}(A)$ for some $\wp \mid \mathfrak{D}$.

Shimura varieties: Fix $\mathcal{O} \subset B$.

- $G=\operatorname{Res}_{F / \mathbb{Q}}\left(B^{*}\right)$ reductive algebraic over \mathbb{Q} :

$$
G(H)=\left(B \otimes_{\mathbb{Q}} H\right)^{*} \text { for any algebra } H \text { over } \mathbb{Q} .
$$

- $G(\mathbb{Q})=B^{*}$.
- $G(\mathbb{R}) \simeq \mathrm{GL}_{2}(\mathbb{R}) \times \stackrel{(n)}{.} \times \mathrm{GL}_{2}(\mathbb{R})$.
- $\hat{\mathcal{O}}^{*}=\prod_{\wp} \mathcal{O}_{\wp}^{*} \subset G\left(\mathbb{A}_{f}\right)$, a compact open subgroup.

Here, $n=[F: \mathbb{Q}]$ and $g=[E: \mathbb{Q}]=2 n$.

Define the Shimura variety

$$
X_{\mathcal{O}, \mathbb{C}}=G(\mathbb{Q}) \backslash \mathcal{H}_{ \pm}^{n} \times G\left(\mathbb{A}_{f}\right) / \hat{\mathcal{O}}^{*}=\bigsqcup_{i=1}^{h} \Gamma_{i} \backslash \mathcal{H}_{ \pm}^{n}
$$

where

- $\mathcal{H}_{ \pm}=\mathbb{P}^{1}(\mathbb{C}) \backslash \mathbb{P}^{1}(\mathbb{R})$.
- $\Gamma_{i}=\mathcal{O}_{i}^{*}$, where each \mathcal{O}_{i} is locally isomorphic to \mathcal{O}.

Let $X_{\mathcal{O}}$ be Shimura's canonical model of $X_{\mathcal{O}, \mathbb{C}}$ over F.

- If $F=\mathbb{Q}$ and $\mathcal{O}=\mathrm{M}_{0}(N) \rightsquigarrow X_{0}(N)$.
- If $\mathcal{O} \subseteq B=M_{2}(F) \rightsquigarrow$ Hilbert-Blumenthal variety.
- If B is a division totally indefinite quaternion algebra:
$X_{\mathcal{O}}$ is a compact Shimura variety, $\operatorname{dim}\left(X_{\mathcal{O}}\right)=[F: \mathbb{Q}]$.

Let $\mathcal{O} \subset B$ be a maximal order.

$$
X_{\mathcal{O}}(\mathbb{C})=\{(A, \iota)\} / \simeq
$$

- A is an abelian variety of dimension $g=2[F: \mathbb{Q}]$,
- $\iota: \mathcal{O} \hookrightarrow \operatorname{End}(A)$,

For K / \mathbb{Q}, since $X_{\mathcal{O}}$ is only a coarse moduli scheme:

$$
X_{\mathcal{O}}(K)=\{[A, \iota]\}, K=\text { field of moduli of }(A, \iota) .
$$

- Let A / \mathbb{Q} be a modular abelian variety with $\mathcal{O} \stackrel{\iota}{\simeq} \operatorname{End}_{K}(A) \subset B$:

$$
[A, \iota] \in X_{\mathcal{O}}(K)
$$

- $R \subset E=F\left(\omega_{m}\right) \subset B \quad$ where $\omega_{m}^{2}=m$ and $R=E \cap \mathcal{O}$.
- $\omega_{m} \in B^{*}$ induces an Atkin-Lehner involution on $X_{\mathcal{O}}$:

$$
(A, \iota) \mapsto\left(A, \omega_{m}^{-1} \iota \omega_{m}\right)
$$

- $\left(A, \iota_{\mid R}\right) \in X_{\mathcal{O}} /\left\langle\omega_{m}\right\rangle(\mathbb{Q})$, where $\iota_{\mid R}: R \hookrightarrow \operatorname{End}_{\mathbb{Q}}(A)$.

Can we prove $X_{\mathcal{O}} /\left\langle\omega_{m}\right\rangle(\mathbb{Q})=\emptyset$?

- (Shimura) $X_{\mathcal{O}}(\mathbb{R})=\emptyset$.
- (Cerednik, Drinfeld) When $F=\mathbb{Q}$ and $p \mid \mathfrak{D}=(D)$:

$$
X_{\mathcal{O}}\left(\mathbb{C}_{p}\right) \simeq \Gamma \backslash\left(\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)-\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)\right) \text { with } \Gamma \subset \operatorname{PSL}_{2}\left(\mathbb{Q}_{p}\right)
$$

$X_{\mathcal{O}} \bmod p \quad \leftrightarrow \quad \backslash \backslash \mathcal{T}_{p}$, where $\Gamma=\mathcal{O}^{\prime}\left[\frac{1}{p}\right]_{1}^{*}, \operatorname{disc}\left(\mathcal{O}^{\prime}\right)=D / p$ and \mathcal{T}_{p} is Bruhat-Tits tree.

- (Zink, Rapoport, Varshavsky) Higher-dimensional analogue.

When $F=\mathbb{Q}$, write X_{D} for $X_{\mathcal{O}}$ with $\operatorname{disc}(\mathcal{O})=(D)$.

- (R.-Skorobogatov-Yafaev)
- $m \mid D$.
- If $m \neq D, D / p, X_{D} /\left\langle\omega_{m}\right\rangle(\mathbb{Q}) \subset X_{D} /\left\langle\omega_{m}\right\rangle(\mathbb{A})=\emptyset$.
- $X_{D} /\left\langle\omega_{D}\right\rangle\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all $p \leq \infty$.
- Explicit criteria for $X_{D} /\left\langle\omega_{m}\right\rangle(\mathbb{A})=\emptyset$, where $D=p m$ is any factorization with p prime.
- (R.) If $D>546, X_{D} /\left\langle\omega_{m}\right\rangle(\mathbb{Q})$ is a finite set.

Descent on $\pi: X_{\mathcal{O}} \rightarrow X_{\mathcal{O}} /\left\langle\omega_{m}\right\rangle$.

- Let $\Delta \in \mathbb{Z}$ be the product of $p \mid N_{F / \mathbb{Q}}(\operatorname{disc}(\mathcal{O})) \cdot \operatorname{disc}(F / \mathbb{Q})$.
- $\pi: \mathcal{X}_{\mathcal{O}} \rightarrow \mathcal{X}_{\mathcal{O}} /\left\langle\omega_{m}\right\rangle$ extends to a smooth morphism over $\mathbb{Z}\left[\Delta^{-1}\right]$.
- Assume $m R_{f}$ is square-free and $\tau(m)>4$ for some $\tau: F \hookrightarrow \mathbb{R}$. Then π is étale if some prime $\wp \mid \mathfrak{D}$ splits in $F(\sqrt{-m})$.
- $X_{\mathcal{O}} /\left\langle\omega_{m}\right\rangle(\mathbb{Q})=\bigcup_{d}{ }^{d} \pi\left({ }^{d} X_{\mathcal{O}}(\mathbb{Q})\right)$.
- ${ }^{d} X_{\mathcal{O}}$ is the quadratic twist associated with $\mathbb{Q}(\sqrt{d})$. It suffices to take $d<0$ and unramified away from Δ.
- $X_{23 \cdot 107} /\left\langle\omega_{107}\right\rangle$ violates the Hasse principle over \mathbb{Q}.

Explicit approaches: equations and point-counting.

D	g	X_{D}	$\omega_{p}(x, y)$	$\omega_{q}(x, y)$
6	0	$x^{2}+y^{2}+3=0$	$(-x,-y)$	$(x,-y)$
10	0	$x^{2}+y^{2}+2=0$	$(x,-y)$	$(-x,-y)$
22	0	$x^{2}+y^{2}+11=0$	$(-x,-y)$	$(x,-y)$
14	1	$\left(x^{2}-13\right)^{2}+7^{3}+2 y^{2}=0$	$\left(\begin{array}{l}-x, \quad y)\end{array}\right.$	$(-x,-y)$
15	1	$\left(x^{2}+3^{5}\right)\left(x^{2}+3\right)+3 y^{2}=0$	$(-x, \quad y)$	$(-x,-y)$
21	1	$x^{4}-658 x^{2}+7^{6}+7 y^{2}=0$	$(-x,-y)$	$\left(\begin{array}{l}-x, \quad y) \\ \hline 33\end{array} 1\right.$

Write $Y=X_{D} /\left\langle\omega_{q}\right\rangle$ for $D=p q$.

D	$\sharp Y(\mathbb{Q})$	$\sharp Y_{C M}(\mathbb{Q})$	$\sharp\left\{A, i: \mathbb{Q}(\sqrt{q}) \hookrightarrow \operatorname{End}^{0}(A)\right\}$
$2 \cdot 3$	∞	1	∞
$2 \cdot 5$	∞	2	∞
$2 \cdot 7$	6	2	4
$2 \cdot 11$	∞	2	∞
$2 \cdot 13$	3	1	0
$2 \cdot 17$	0	0	0
$2 \cdot 19$	3	1	0
$2 \cdot 23$	2	2	0
$2 \cdot 29$	∞	2	>0
$3 \cdot 5$	4	4	0
$3 \cdot 7$	0	0	0
$3 \cdot 11$	2	2	0

Theorem. Let $\pi: X_{D} \rightarrow X_{D} /\left\langle\omega_{m}\right\rangle$ for some $m \mid D$. The obstruction in $\operatorname{Br}(\mathbb{Q})$ for a point $P \in X_{D} /\left\langle\omega_{m}\right\rangle(\mathbb{Q})$ to correspond to

$$
\left(A, i: \mathbb{Q}(\sqrt{q}) \hookrightarrow \operatorname{End}^{0}(A)\right)
$$

is

$$
B \otimes\left(\frac{-d, m}{\mathbb{Q}}\right) .
$$

Here $\pi^{-1}(P) \subset X_{D}(\mathbb{Q}(\sqrt{-d}))$.

D	$X_{D} /\left\langle\omega_{D}\right\rangle$	$X_{D} /\left\langle\omega_{D}\right\rangle(\mathbb{Q})$
91	$Y^{2}=-X^{6}+19 X^{4}-3 X^{2}+1$	$(0, \pm 1),(\pm 1, \pm 4),(\pm 3, \pm 28)$
123	$Y^{2}=-9 X^{6}+19 X^{4}+5 X^{2}+1$	$\begin{gathered} (0, \pm 1),(\pm 1, \pm 4) \\ \left(\pm 1 / 3, \pm \frac{4}{3}\right) \\ \hline \end{gathered}$
141	$Y^{2}=27 X^{6}-5 X^{4}-7 X^{2}+1$	$\begin{gathered} (\pm 1, \pm 4),\left(\pm \frac{1}{3}, \pm \frac{4}{9}\right), \\ (0, \pm 1),\left(\pm \frac{11}{13}, \pm \frac{4012}{2197}\right) \end{gathered}$
142	$Y^{2}=16 X^{6}+9 X^{4}-10 X^{2}+1$	$\begin{gathered} \pm \infty,(0, \pm 1),(\pm 1, \pm 4) \\ \left(\pm \frac{1}{3}, \pm \frac{4}{27}\right) \end{gathered}$
155	$Y^{2}=25 X^{6}-19 X^{4}+11 X^{2}-1$	$\pm \infty,(\pm 1, \pm 4),\left(\pm \frac{1}{3}, \pm \frac{4}{27}\right)$
158	$Y^{2}=-8 X^{6}+9 X^{4}+14 X^{2}+1$	$\begin{gathered} (\pm 1, \pm 4),(0, \pm 1) \\ \left(\pm \frac{1}{3}, \pm \frac{44}{27}\right) \end{gathered}$
254	$Y^{2}=8 X^{6}+25 X^{4}-18 X^{2}+1$	$(0, \pm 1),(\pm 1, \pm 2),(\pm 2, \pm 29)$
326	$Y^{2}=X^{6}+10 X^{4}-63 X^{2}+4$	$\pm \infty,(0, \pm 2)$
446	$Y^{2}=-16 X^{6}-7 X^{4}+38 X^{2}+1$	$(0, \pm 1),(\pm 1, \pm 4)$

Rational points on genus 2 curves $X_{D} /\left\langle\omega_{D}\right\rangle$ (Bruin-Flynn-Gonzalez-R.)

Conclusion. Let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ be a non-CM newform with an inner-twist $(\underline{-d})$ such that $E_{f}=\mathbb{Q}(\sqrt{m})$ and $\operatorname{disc}\left(\frac{-d, m}{\mathbb{Q}}\right)=D>1$.

- Local methods: $m \mid D, m=D$ or D / p with p prime satisfying explicit congruence conditions.
- Descent:
- d|2D
- $(D, m) \neq(23,107)$ and similar examples, always explained by the Brauer-Manin obstruction.
- Brute force: $\quad(D, m) \neq(91,91),(123,123),(155,155)$, $(158,158),(326,326),(446,446)$.

Main Theorem (R.) Let $f \in S_{2}\left(\Gamma_{1}(N)\right)$ be a newform with an inner-twist by $\chi=(\underline{-d})$. Let $E_{f}=F_{f}(\sqrt{m})$ and $\mathfrak{D}=\operatorname{disc}\left(B_{f}\right)$.
Assume B_{f} is division ${ }^{1}$.
(i) $m R_{F}=\mathfrak{m}_{0}^{2} \cdot \mathfrak{m}$ with $\mathfrak{m} \mid \mathfrak{D}$.
(ii) $\wp \mid p \equiv 3 \bmod 4$ for any $\wp \mid \mathfrak{D}, \wp \nmid 2 m$.
(iii) Assume $\mathfrak{D} \nmid 2 m$ and $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right) \not \subset F$ for $n \neq 1,2,3,4,6$. For any ℓ such that $\sqrt{\ell}, \sqrt{2 \ell}, \sqrt{3 \ell}, \sqrt{2 \ell \pm \sqrt{3} \ell} \notin F$ and $\left(\frac{K}{\ell}\right) \neq-1$, either

[^0]- $\left(\frac{-\ell}{\wp}\right) \neq 1$ for all $\wp \mid \mathfrak{D}$, or
- $\wp \in \mathcal{P}_{\ell}$ for all $\wp \mid \mathfrak{D}, \wp \nmid 2 m$, where

$$
\mathcal{P}_{\ell}=\left\{\wp: \wp \mid \ell, a^{2}-s \ell\right\}
$$

for $0 \leq s \leq 4$ and $a \in R_{F}, a \neq \sqrt{s \ell},|\tau(a)| \leq 2 \sqrt{\ell} \quad \forall \tau: F \hookrightarrow \mathbb{R}$.
The set \mathcal{P}_{ℓ} is meant to be a small set of small exceptional primes.
When $F=\mathbb{Q}$,

$$
\mathcal{P}_{2}=\{2,3,5,7\} \text { and } \mathcal{P}_{3}=\{2,3,5\} .
$$

Theorem. Let $F_{f}=\mathbb{Q}, E_{f}=\mathbb{Q}(\sqrt{m}), \chi=(\underline{-d})$ and
$D=\operatorname{disc}\left(\frac{-d, m}{\mathbb{Q}}\right)=p m$ with p, m odd primes. Then
(i) $p \equiv 3 \bmod 4$ and $\left(\frac{-p}{m}\right)=-1$.
(ii) If $m \equiv 3 \bmod 4$, then $d=p$ and $\left(\frac{-\ell}{m}\right)=-1$ for any odd ℓ such that $\left(\frac{\ell}{p}\right)=1$ and $p \notin \mathcal{P}_{\ell}$.
(iii) If $m \equiv 1 \bmod 4$, then $d=p$ or $p m$.

- If $d=p$, then $\left(\frac{-\ell}{p}\right)=-1$ provided $\left(\frac{\ell}{p}\right)=1$ and $p \notin \mathcal{P}_{\ell}$.
- If $d=p m$, then $p \equiv 3 \bmod 8$ and $p \in \mathcal{P}_{\ell}$ for any odd prime ℓ such that $\left(\frac{-p m}{\ell}\right)=1$.

Idea of the proof. Let $r_{\wp}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(E_{\wp}\right)$ at $\wp \mid \mathfrak{D}, \wp \nmid 2 m$.

- A_{f} / \mathbb{Q} has potential good reduction at any $\ell \stackrel{S-T}{\sim} \tilde{A}_{f} / \mathbb{F}_{\ell}$.
- $P_{\varphi_{\ell}}=T^{2}-a_{\ell} T+\ell, a_{\ell} \in R_{E},\left|\tau\left(a_{\ell}\right)\right| \leq 2 \sqrt{\ell}$ for any $\tau: E \hookrightarrow \mathbb{R}$.

Lemma. There is a character $\alpha_{\wp}: G_{\mathbb{Q}} \longrightarrow k_{\wp}^{*}=\mathbb{F}_{q}^{*}$ such that

$$
\bar{r}_{\wp}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}\left(k_{\wp}\right), \quad \bar{r}_{\wp}=\left(\begin{array}{cc}
\chi \cdot \alpha_{\wp}^{q} & 0 \\
* & \alpha_{\wp}
\end{array}\right) .
$$

Idea: α_{\wp} is the restriction of \bar{r}_{\wp} to certain $A_{f}\left[I_{\wp}\right] \subset A_{f}[\wp] \subset A[p]$.

Corollary. $a_{\ell} \bmod \wp=\alpha_{\wp}\left(\varphi_{\ell}\right)+\ell \alpha_{\wp}\left(\varphi_{\ell}^{-1}\right)$.
Proposition. There is an even positive integer κ such that $\alpha_{\wp}\left(\varphi_{\ell}^{\kappa}\right)=\ell^{\kappa / 2} \in \mathbb{F}_{p}^{*}$ for $\ell \neq p$.

- $\kappa=\kappa(F)$, but can be made smaller for given B_{f} or (f, \wp).
- If $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right) \not \subset F$ for $n=5$ and $n \geq 7, \kappa=24$.

Idea: For $\ell \neq p, \alpha_{\wp}\left(I_{\ell}\right)^{24}=\{1\}$.
Corollary. $a_{\ell} \bmod \wp=\sqrt{\ell} \cdot\left(\zeta+\zeta^{-1}\right), \zeta^{24}=1$.

We defined the finite set \mathcal{P}_{ℓ} so that

$$
a_{\ell}=\sqrt{\ell} \cdot\left(\zeta+\zeta^{-1}\right)=0, \sqrt{\ell}, \sqrt{2 \ell}, \sqrt{3 \ell}, 2 \sqrt{\ell} \in F
$$

- Because $\left(\frac{K}{\ell}\right)=-1, \mathbb{Q} \otimes \operatorname{End}_{K}(A) \hookrightarrow \mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_{\ell}}(\tilde{A})=\mathrm{M}_{2 r}(\tilde{F})$.
- $\tilde{F}=\mathbb{Q}(\sqrt{-\ell}), \mathbb{Q}(\sqrt{\ell}, \sqrt{-3}), \mathbb{Q}(\sqrt{2 \ell}, \sqrt{-1}), \mathbb{Q}(\sqrt{3 \ell}, \sqrt{-3})$ and $r=2[F: \mathbb{Q}] /[\tilde{F}: \mathbb{Q}]$, by Honda-Tate.

Lemma. $F \cdot \tilde{F}$ splits B, that is, no prime $\wp \mid \mathfrak{D}$ splits in $F \cdot \tilde{F} / F$.
Idea. B acts $F \tilde{F} \otimes \mathbb{Q}_{p}$-linearly on $V_{p}(A)$, because $B \subset \mathbb{Q} \otimes \operatorname{End}_{\mathbb{F}_{\ell}}(\tilde{A})$, whose center is \tilde{F}.
Since $\operatorname{dim}_{F \tilde{F} \otimes \mathbb{Q}_{p}} V_{p}(A)=2, B \subset M_{2}\left(F \tilde{F} \otimes \mathbb{Q}_{p}\right)$.
This proves the Main Theorem.

[^0]: ${ }^{1}$ We also assume that we can choose A_{f} in its \mathbb{Q}-isogeny class such that $\mathcal{O}=\operatorname{End}_{K}(A)$ is maximal in B_{f}. See the preprint for a more general version.

