Diagonal cycles, triple product L-functions and rational points on elliptic curves (Séminaire de Théorie des Nombres de Bordeaux)

Victor Rotger (Joint work with Henri Darmon)

January 16, 2012

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}(N) \text { with } L(E, s)=L(f, s)
$$

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}(N) \text { with } L(E, s)=L(f, s)
$$

The modular parametrization is

$$
\begin{array}{cccc}
\varphi: \quad X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathfrak{H}^{*} & \longrightarrow & E(\mathbb{C}) \\
\tau & \mapsto & P_{\tau}:=2 \pi i \int_{\infty}^{\tau} f(z) d z \\
& & =\sum_{n \geq 1} \frac{a_{n}}{n} e^{2 \pi i n \cdot \tau}
\end{array}
$$

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}(N) \text { with } L(E, s)=L(f, s)
$$

The modular parametrization is

$$
\begin{aligned}
& \qquad: \quad X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathfrak{H}^{*} \longrightarrow \\
& \mapsto \quad P_{\tau}:=2 \pi i \int_{\infty}^{\tau} f(z) d z \\
&=\sum_{n \geq 1} \frac{a_{n}}{n} e^{2 \pi i n \cdot \tau} \\
& \text { If } \tau \in \mathbb{P}^{1}(\mathbb{Q}) \text { is a cusp: } \quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }} .
\end{aligned}
$$

Classical Heegner points

Let $E_{/ \mathbb{Q}}$ be an elliptic curve and

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}(N) \text { with } L(E, s)=L(f, s) .
$$

The modular parametrization is

$$
\begin{aligned}
\varphi: \quad X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathfrak{H}^{*} & \longrightarrow \\
& \mapsto \\
& P_{\tau}:=2 \pi i \int_{\infty}^{\tau} f(z) d z \\
& =\sum_{n \geq 1} \frac{a_{n}}{n} e^{2 \pi i n \cdot \tau}
\end{aligned}
$$

If $\tau \in \mathbb{P}^{1}(\mathbb{Q})$ is a cusp: $\quad P_{\tau} \in E(\mathbb{Q})_{\text {tors }}$.
If $\tau \in \mathcal{H} \cap K$, where K is imaginary quadratic: $\quad P_{\tau} \in E\left(K^{a b}\right)$.

- The universal covering of $X_{0}(N)$ is

$$
\mathbf{P}\left(X_{0}(N) ; \infty\right)=\left\{\gamma:[0,1] \longrightarrow X_{0}(N), \gamma(0)=\infty\right\} / \text { homotopy }
$$

- The universal covering of $X_{0}(N)$ is

$$
\mathbf{P}\left(X_{0}(N) ; \infty\right)=\left\{\gamma:[0,1] \longrightarrow X_{0}(N), \gamma(0)=\infty\right\} / \text { homotopy }
$$

- The modular parametrization factors through

$$
\begin{array}{ccc}
\varphi: \quad X_{0}(N)=\pi_{1}\left(X_{0}(N)\right) \backslash \mathbf{P}\left(X_{0}(N)\right) & \longrightarrow & J_{0}(N) \rightarrow E \\
\gamma: \infty \sim \tau & \mapsto & P_{\tau}:=\int_{\gamma} \omega_{f},
\end{array}
$$

- The universal covering of $X_{0}(N)$ is

$$
\mathbf{P}\left(X_{0}(N) ; \infty\right)=\left\{\gamma:[0,1] \longrightarrow X_{0}(N), \gamma(0)=\infty\right\} / \text { homotopy }
$$

- The modular parametrization factors through

$$
\begin{array}{ccc}
\varphi: \quad X_{0}(N)=\pi_{1}\left(X_{0}(N)\right) \backslash \mathbf{P}\left(X_{0}(N)\right) & \longrightarrow & J_{0}(N) \rightarrow E \\
\gamma: \infty \sim \tau & & P_{\tau}:=\int_{\gamma} \omega_{f},
\end{array}
$$

as $\pi_{1}\left(X_{0}(N)\right) \rightarrow \mathbb{C}, \gamma \mapsto \int_{\gamma} \omega_{f}$ factors through $H_{1}\left(X_{0}(N), \mathbb{Z}\right)$.

- The universal covering of $X_{0}(N)$ is
$\mathbf{P}\left(X_{0}(N) ; \infty\right)=\left\{\gamma:[0,1] \longrightarrow X_{0}(N), \gamma(0)=\infty\right\} /$ homotopy.
- The modular parametrization factors through

$$
\begin{array}{rlll}
\varphi: \quad X_{0}(N)=\pi_{1}\left(X_{0}(N)\right) \backslash \mathbf{P}\left(X_{0}(N)\right) & \longrightarrow & J_{0}(N) \rightarrow E \\
\gamma: \infty \sim \tau & \mapsto & P_{\tau}:=\int_{\gamma} \omega_{f},
\end{array}
$$

as $\pi_{1}\left(X_{0}(N)\right) \rightarrow \mathbb{C}, \gamma \mapsto \int_{\gamma} \omega_{f}$ factors through $H_{1}\left(X_{0}(N), \mathbb{Z}\right)$.

- Chen's iterated integrals may give rise to anabelian modular parametrizations of points in $E(\mathbb{C})$.

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The iterated integral attached to a tuple of smooth 1 -forms $\left(\omega_{1}, \ldots, \omega_{n}\right)$ on Y is

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The iterated integral attached to a tuple of smooth 1 -forms $\left(\omega_{1}, \ldots, \omega_{n}\right)$ on Y is the functional
$\gamma \mapsto \int_{\gamma} \omega_{1} \cdot \omega_{2} \cdots \cdot \omega_{n}:=\int_{\Delta}\left(\gamma^{*} \omega_{1}\right)\left(t_{1}\right)\left(\gamma^{*} \omega_{2}\right)\left(t_{2}\right) \cdots\left(\gamma^{*} \omega_{n}\right)\left(t_{n}\right)$,
where $\Delta=\left\{0 \leq t_{n} \leq t_{n-1} \leq \cdots \leq t_{1} \leq 1\right\}$.

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The iterated integral attached to a tuple of smooth 1 -forms $\left(\omega_{1}, \ldots, \omega_{n}\right)$ on Y is the functional
$\gamma \mapsto \int_{\gamma} \omega_{1} \cdot \omega_{2} \cdots \cdot \omega_{n}:=\int_{\Delta}\left(\gamma^{*} \omega_{1}\right)\left(t_{1}\right)\left(\gamma^{*} \omega_{2}\right)\left(t_{2}\right) \cdots\left(\gamma^{*} \omega_{n}\right)\left(t_{n}\right)$,
where $\Delta=\left\{0 \leq t_{n} \leq t_{n-1} \leq \cdots \leq t_{1} \leq 1\right\}$.
- When $n=2: \int_{\gamma} \omega \cdot \eta=\int_{\tilde{\gamma}} \omega F_{\eta}, \quad$ for F_{η} primitive of η on \tilde{Y}.

Chen's iterated path integrals

- Y smooth quasi-projective curve, $o \in Y$ base point, \tilde{Y} universal covering.
- The iterated integral attached to a tuple of smooth 1 -forms $\left(\omega_{1}, \ldots, \omega_{n}\right)$ on Y is the functional
$\gamma \mapsto \int_{\gamma} \omega_{1} \cdot \omega_{2} \cdots \cdot \omega_{n}:=\int_{\Delta}\left(\gamma^{*} \omega_{1}\right)\left(t_{1}\right)\left(\gamma^{*} \omega_{2}\right)\left(t_{2}\right) \cdots\left(\gamma^{*} \omega_{n}\right)\left(t_{n}\right)$,
where $\Delta=\left\{0 \leq t_{n} \leq t_{n-1} \leq \cdots \leq t_{1} \leq 1\right\}$.
- When $n=2: \int_{\gamma} \omega \cdot \eta=\int_{\tilde{\gamma}} \omega F_{\eta}, \quad$ for F_{η} primitive of η on \tilde{Y}.
- A linear combination of iterated integrals which is homotopy invariant yields $J: \mathbf{P}(Y ; o) \longrightarrow \mathbb{C}$.

Iterated integrals of modular forms

- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.

Iterated integrals of modular forms

- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^{1}(X)$

Iterated integrals of modular forms

- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^{1}(X)$ and $\eta \in \Omega_{\mathrm{II}}^{1}(X)$, regular at ∞.
- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^{1}(X)$ and $\eta \in \Omega_{\mathrm{II}}^{1}(X)$, regular at ∞.
- Let $\alpha=\alpha_{\omega, \eta} \in \Omega_{\text {mer }}^{1}(X)$, with a \log poles at ∞, such that $\omega F_{\eta}-\alpha_{\omega, \eta}$ is regular on \tilde{Y}.
- $X=X_{0}(N), Y=X \backslash\{\infty\}$, cusp 0 as base point.
- Let $\omega \in \Omega^{1}(X)$ and $\eta \in \Omega_{\mathrm{II}}^{1}(X)$, regular at ∞.
- Let $\alpha=\alpha_{\omega, \eta} \in \Omega_{\text {mer }}^{1}(X)$, with a \log poles at ∞, such that $\omega F_{\eta}-\alpha_{\omega, \eta}$ is regular on \tilde{Y}.
- $J_{\omega, \eta}:=\int \omega \cdot \eta-\alpha_{\omega, \eta}$ is homotopy-invariant.

Iterated integrals of modular forms

- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$.
- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.

Iterated integrals of modular forms

- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.
- Define $P_{g, f}:=\sum_{i=1}^{t} \int_{\gamma_{f}} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \cdot \omega_{g, i}-2 \alpha_{i} \in E(\mathbb{C})$.

Iterated integrals of modular forms

- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.
- Define $P_{g, f}:=\sum_{i=1}^{t} \int_{\gamma_{f}} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \cdot \omega_{g, i}-2 \alpha_{i} \in E(\mathbb{C})$.
- The point is independent of the choice of base point 0 , path γ_{f} or basis of $H^{1}(X)[g]$.

Iterated integrals of modular forms

- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.
- Define $P_{g, f}:=\sum_{i=1}^{t} \int_{\gamma_{f}} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \cdot \omega_{g, i}-2 \alpha_{i} \in E(\mathbb{C})$.
- The point is independent of the choice of base point 0 , path γ_{f} or basis of $H^{1}(X)[g]$.
- With M. Daub, H. Darmon and S. Lichtenstein we have an algorithm to compute $P_{g, f}$.

Iterated integrals of modular forms

- Let $E_{/ \mathbb{Q}}$ be an elliptic curve and $f=f_{E} \in S_{2}\left(N_{E}\right)$.
- Let $g \in S_{2}(M)$ be a newform of some level N_{g}, with $\left[\mathbb{Q}\left(\left\{a_{n}(g)\right\}\right): \mathbb{Q}\right]=t \geq 1$. Put $N=\operatorname{lcm}\left(N_{E}, N_{g}\right)$.
- $\gamma_{f} \in H_{1}(X, \mathbb{C})$ Poincaré dual of ω_{f}.
- Let $\left\{\omega_{g, i}, \eta_{g, i}\right\}_{i=1, \ldots, t}$ be a symplectic basis of $H^{1}(X)[g]$.
- Define $P_{g, f}:=\sum_{i=1}^{t} \int_{\gamma_{f}} \omega_{g, i} \cdot \eta_{g, i}-\eta_{g, i} \cdot \omega_{g, i}-2 \alpha_{i} \in E(\mathbb{C})$.
- The point is independent of the choice of base point 0 , path γ_{f} or basis of $H^{1}(X)[g]$.
- With M. Daub, H. Darmon and S. Lichtenstein we have an algorithm to compute $P_{g, f}$. W. Stein has an alternative method based on an idea of S. Zhang.

E	$P_{g e n}$	N_{g}	$P_{g, f}$
37a	$(0,-1)$	37	$-6 P$
43a	$(0,-1)$	43	$4 P$
53a	$(0,-1)$	53	$-2 P$
57a	$(2,1)$	57	$\frac{4}{3} P$
		57	$-\frac{16}{3} P$
		19	$-4 P$
58a	$(0,-1)$	58	$4 P$
		29	0
		29	$4 P$
77a	$(2,3)$	77	$\frac{12}{5} P$
		77	$-\frac{4}{3} P$
		11	$\frac{4}{3} P$
79a	$(0,0)$	79	$-4 P$
82a	$(0,0)$	82	0
		82	$2 P$
		41	$2 P$
		41	0

83a	$(0,0)$	83	0
		83	$2 P$
88a	$(2,-2)$	88	0
		$44 g$	0
		$44 g(2)$	$8 P$
		$11 g$	0
		$11 g(2)$	$8 P$
91a	$(0,0)$	91	$2 P$
		91	$2 P$
		91	$4 P$
91b	$(-1,3)$	91	0
		91	0
		91	0
92b	$(1,1)$	92	0
		46	0
99a	$(2,0)$	99	$-\frac{2}{3} P$
446d	$(1,0),(0,2)$	446	0
681a	$(4,4)$	681	$-24 P$

Victor Rotger

Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are \mathbb{Q}-rational.

Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are \mathbb{Q}-rational.
Theorem 2. Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N_{E} and g a newform of level N_{g}.

Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are \mathbb{Q}-rational.
Theorem 2. Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N_{E} and g a newform of level N_{g}. Assume $\operatorname{gcd}\left(N_{g}, N_{E}\right)$ divides N exactly.

Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are \mathbb{Q}-rational.
Theorem 2. Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N_{E} and g a newform of level N_{g}. Assume $\operatorname{gcd}\left(N_{g}, N_{E}\right)$ divides N exactly. Define $\underline{P}_{g, f}:=\left\langle P_{\sigma g(a z), f(b z)}\right\rangle \subseteq E(\mathbb{Q})$ where

$$
a\left|\frac{N}{N_{g}}, b\right| \frac{N}{N_{E}}, \sigma: K_{g} \hookrightarrow \mathbb{C}
$$

Theorem 1 (Darmon-R.-Sols) The points $P_{f, g}$ are \mathbb{Q}-rational.
Theorem 2. Let $E_{/ \mathbb{Q}}$ be an elliptic curve of conductor N_{E} and g a newform of level N_{g}. Assume $\operatorname{gcd}\left(N_{g}, N_{E}\right)$ divides N exactly.
Define $\underline{P}_{g, f}:=\left\langle P_{\sigma g(a z), f(b z)}\right\rangle \subseteq E(\mathbb{Q})$ where

$$
a\left|\frac{N}{N_{g}}, b\right| \frac{N}{N_{E}}, \sigma: K_{g} \hookrightarrow \mathbb{C}
$$

The module $\underline{P}_{g, f}$ is nonzero if and only if:
i. $L(f, 1)=0, L^{\prime}(f, 1) \neq 0$
ii. the local signs at finite primes of $L\left(g^{\sigma} \otimes g^{\sigma} \otimes f, s\right)$ are all +1
iii. $L\left(\operatorname{Sym}^{2}\left(g^{\sigma}\right) \otimes f, 2\right) \neq 0$.

Examples

- $E=37 a, g=37 b$,

Examples

- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a$,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a$.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d$,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right)=0$.
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right)=0$.
- $E=446 d, g=446 b$,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right)=0$.
- $E=446 d, g=446 b, \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion,
- $E=37 a, g=37 b, \varepsilon_{37}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$ and $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is not torsion.
- $E=58 a, g=29 a, \varepsilon_{2}(g, g, f)=\varepsilon_{29}(g, g, f)=+1$ and $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right) \neq 0$. But $P_{g, f}$ is torsion. $\underline{P}_{g, f}$ contains the non-torsion point $P_{g(2), f}$.
- $E=91 b, g=91 a . \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $\varepsilon_{7}(g, g, f)=\varepsilon_{13}(g, g, f)=-1$. Wants a Shimura curve.
- $E=158 b, g=158 d, \varepsilon_{2}(g, g, f)=\varepsilon_{79}(g, g, f)=+1$, $\underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L\left(f \otimes \operatorname{Sym}^{2}(g), 2\right)=0$.
- $E=446 d, g=446 b, \underline{P}_{g, f}=\left\langle P_{g, f}\right\rangle$ is torsion, because $L(E, 1)=L^{\prime}(E, 1)=0, L^{\prime \prime}(E, 1) \neq 0$.
$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right) 0 .
\end{aligned}
$$

$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$.

$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$,
$\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$, $\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\mathrm{AJ}_{\mathbb{C}}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & & \downarrow \\
E & \xrightarrow{\text { AJC }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$, $\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\text { AJ }_{C}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & \downarrow \\
E & \xrightarrow{\text { AJ }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

Theorem. (Darmon-R.-Sols) $\Delta[g, g, f] \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$

$P_{g, f}$ as a complex Chow-Heegner point

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$, $\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\text { AJ }_{C}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & \downarrow \\
E & \xrightarrow{\text { AJ }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

Theorem. (Darmon-R.-Sols) $\Delta[g, g, f] \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
$\mapsto \pi_{123}^{*} \Delta[g, g, f]$

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$,
$\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\text { AJ }_{C}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & \downarrow \\
E & \xrightarrow{\text { AJ }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

Theorem. (Darmon-R.-Sols) $\Delta[g, g, f] \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
$\mapsto \pi_{123}^{*} \Delta[g, g, f] \mapsto \pi_{123}^{*} \Delta[g, g, f] \cdot \Pi$

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$, $\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\text { AJ }_{C}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & \downarrow \\
E & \xrightarrow{\text { AJ }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

Theorem. (Darmon-R.-Sols) $\Delta[g, g, f] \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
$\mapsto \pi_{123}^{*} \Delta[g, g, f] \mapsto \pi_{123}^{*} \Delta[g, g, f] \cdot \Pi$
$\mapsto \pi_{E, *}\left(\pi_{123}^{*} \Delta[g, g, f] \cdot \Pi\right)=P_{g, f} \in E$.

Gross-Kudla-Schoen's diagonal cycle in X^{3} is

$$
\begin{aligned}
\Delta & =\{(x, x, x)\}-\{(x, x, 0)\}-\{(x, 0, x)\}-\{(0, x, x)\}+ \\
& +\{(0,0, x)\}+\{(0, x, 0)\}+\{(x, 0,0)\} \in \mathrm{CH}^{2}\left(X^{3}\right)_{0} .
\end{aligned}
$$

Put $\Pi=\{(x, x, y, y)\} \subset X^{4}$. We have $\pi_{123}: X^{4} \rightarrow X^{3}$, $\pi_{E}: X^{4} \rightarrow X \rightarrow E$, and

$$
\begin{array}{ccc}
\mathrm{CH}^{2}\left(X^{3}\right)_{0} & \xrightarrow{\text { AJ }_{C}} & J^{2}\left(X^{3}\right)=\frac{\mathrm{Fil}^{2} H_{d R}^{3}\left(X^{3}\right)^{\vee}}{H_{3}\left(X^{3}, \mathbb{Z}\right)} \\
\downarrow & \downarrow \\
E & \xrightarrow{\text { AJ }} & \mathbb{C} / \Lambda_{E},
\end{array}
$$

Theorem. (Darmon-R.-Sols) $\Delta[g, g, f] \in \mathrm{CH}^{2}\left(X^{3}\right)_{0}$
$\mapsto \pi_{123}^{*} \Delta[g, g, f] \mapsto \pi_{123}^{*} \Delta[g, g, f] \cdot \Pi$
$\mapsto \pi_{E, *}\left(\pi_{123}^{*} \Delta[g, g, f] \cdot \Pi\right)=P_{g, f} \in E$.

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\mathrm{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus }
$$

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\begin{gathered}
\operatorname{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus } \\
\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)
\end{gathered}
$$

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\begin{gathered}
\mathrm{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus } \\
\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)
\end{gathered}
$$

M. Daub is implementing the computation of these points via this p-adic formula.

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\begin{gathered}
\mathrm{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus } \\
\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)
\end{gathered}
$$

M. Daub is implementing the computation of these points via this p-adic formula.
Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open nbhd of

$$
X_{0}(N)\left(\mathbb{C}_{p}\right) \backslash \operatorname{red}^{-1}\left(X\left(\overline{\mathbb{F}}_{p}\right)_{s s}\right)
$$

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\begin{gathered}
\mathrm{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus } \\
\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)
\end{gathered}
$$

M. Daub is implementing the computation of these points via this p-adic formula.
Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open nbhd of

$$
X_{0}(N)\left(\mathbb{C}_{p}\right) \backslash \operatorname{red}^{-1}\left(X\left(\overline{\mathbb{F}}_{p}\right)_{s s}\right)
$$

Let $\rho \in \Omega^{1}(\mathcal{W} \times \mathcal{W})$ be a Coleman primitive of $\omega_{g} \otimes \omega_{f}$: $d \rho=P(\Phi)\left(\omega_{g} \otimes \omega_{f}\right)$ for a suitable polynomial P.

The p-adic Abel-Jacobi map at a prime $p \nmid N$ is

$$
\begin{gathered}
\operatorname{AJ}_{p}: \mathrm{CH}^{2}\left(X^{3}\right)_{0}\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Fil}^{2} H_{\mathrm{dR}}^{3}\left(X^{3} / \mathbb{Q}_{p}\right)^{\vee} \text { and thus } \\
\log _{\omega_{f}}\left(P_{g, f}\right)=-2 \operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \wedge \omega_{g} \wedge \omega_{f}\right)
\end{gathered}
$$

M. Daub is implementing the computation of these points via this p-adic formula.
Theorem. (Darmon-R.) Let (\mathcal{W}, Φ) be a wide open nbhd of

$$
X_{0}(N)\left(\mathbb{C}_{p}\right) \backslash \operatorname{red}^{-1}\left(X\left(\overline{\mathbb{F}}_{p}\right)_{s s}\right)
$$

Let $\rho \in \Omega^{1}(\mathcal{W} \times \mathcal{W})$ be a Coleman primitive of $\omega_{g} \otimes \omega_{f}$: $d \rho=P(\Phi)\left(\omega_{g} \otimes \omega_{f}\right)$ for a suitable polynomial P. Then

$$
\operatorname{AJ}_{p}(\Delta)\left(\eta_{g} \otimes \omega_{g} \otimes \omega_{f}\right)=\left\langle\eta_{g}, P(\Phi)^{-1} \epsilon^{*} \rho\right\rangle
$$

where $\epsilon^{*}=\epsilon_{12}^{*}-\epsilon_{1}^{*}-\epsilon_{2}^{*}$, for $\epsilon_{12}, \epsilon_{1}, \epsilon_{2}: X \hookrightarrow X^{2}$.

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

$$
L(f, g, h ; s)=L\left(V_{f} \otimes V_{g} \otimes V_{h} ; s\right)=\prod_{p} L^{(p)}\left(f, g, h ; p^{-s}\right)^{-1}
$$

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

$$
L(f, g, h ; s)=L\left(V_{f} \otimes V_{g} \otimes V_{h} ; s\right)=\prod_{p} L^{(p)}\left(f, g, h ; p^{-s}\right)^{-1}
$$

For $p \nmid N=\operatorname{lcm}\left(N_{f}, N_{g}, N_{h}\right)$, the Euler factor $L^{(p)}(f, g, h ; T)$ is

$$
\left(1-\alpha_{f} \alpha_{g} \alpha_{h} T\right) \cdot\left(1-\alpha_{f} \alpha_{g} \beta_{h} T\right) \cdot \ldots \cdot\left(1-\beta_{f} \beta_{g} \beta_{h} T\right) .
$$

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

$$
L(f, g, h ; s)=L\left(V_{f} \otimes V_{g} \otimes V_{h} ; s\right)=\prod_{p} L^{(p)}\left(f, g, h ; p^{-s}\right)^{-1}
$$

For $p \nmid N=\operatorname{lcm}\left(N_{f}, N_{g}, N_{h}\right)$, the Euler factor $L^{(p)}(f, g, h ; T)$ is

$$
\left(1-\alpha_{f} \alpha_{g} \alpha_{h} T\right) \cdot\left(1-\alpha_{f} \alpha_{g} \beta_{h} T\right) \cdot \ldots \cdot\left(1-\beta_{f} \beta_{g} \beta_{h} T\right) .
$$

- The completed L-function satisfies

$$
\Lambda(f, g, h ; s)=\prod_{p \mid N \infty} \varepsilon_{p}(f, g, h) \cdot \Lambda(f, g, h ; k+\ell+m-2-s) .
$$

Connection with L-functions

The triple L-function of $f \in S_{k}\left(N_{f}\right), g \in S_{\ell}\left(N_{g}\right), h \in S_{m}\left(N_{h}\right)$ is

$$
L(f, g, h ; s)=L\left(V_{f} \otimes V_{g} \otimes V_{h} ; s\right)=\prod_{p} L^{(p)}\left(f, g, h ; p^{-s}\right)^{-1}
$$

For $p \nmid N=\operatorname{lcm}\left(N_{f}, N_{g}, N_{h}\right)$, the Euler factor $L^{(p)}(f, g, h ; T)$ is

$$
\left(1-\alpha_{f} \alpha_{g} \alpha_{h} T\right) \cdot\left(1-\alpha_{f} \alpha_{g} \beta_{h} T\right) \cdot \ldots \cdot\left(1-\beta_{f} \beta_{g} \beta_{h} T\right) .
$$

- The completed L-function satisfies

$$
\Lambda(f, g, h ; s)=\prod_{p \mid N \infty} \varepsilon_{p}(f, g, h) \cdot \Lambda(f, g, h ; k+\ell+m-2-s)
$$

$$
\text { - } \varepsilon_{\infty}(f, g, h)= \begin{cases}-1 & \text { if }(k, \ell, m) \text { are balanced. } \\ +1 & \text { if }(k, \ell, m) \text { are unbalanced. }\end{cases}
$$

A complex Gross-Zagier formula for Δ

Theorem (Yuan-Zhang-Zhang)

$$
h(\Delta[f, g, h])=(\text { Explicit non-zero factor }) \times L^{\prime}(f, g, h, 2)
$$

where

$$
h: \operatorname{CH}^{2}\left(X^{3}\right)_{0} \longrightarrow \mathbb{R}
$$

is Beilinson-Bloch's height pairing.

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow \operatorname{hom}_{\text {cts }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right)$,
- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow \operatorname{hom}_{\mathrm{cts}}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right), \quad \Omega_{f, \mathrm{cl}}:=\kappa^{-1}\left(\mathbb{Z}_{\geq 2}\right)$.
- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow$ hom $_{\text {cts }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right), \quad \Omega_{f, \mathrm{cl}}:=\kappa^{-1}\left(\mathbb{Z}_{\geq 2}\right)$.
- Harris and Tilouine construct a p-adic L-function

$$
\mathcal{L}_{p}(\mathbf{f}, g, h): \Omega_{f} \longrightarrow \mathbb{C}_{p}
$$

interpolating the square-roots of the central critical values of the classical $L\left(f_{x}, g, h, s\right)$ for $x \in \Omega_{f, \mathrm{cl}}$ with $\kappa(x) \geq 4$.

- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow$ hom $_{\text {cts }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right), \quad \Omega_{f, \mathrm{cl}}:=\kappa^{-1}\left(\mathbb{Z}_{\geq 2}\right)$.
- Harris and Tilouine construct a p-adic L-function

$$
\mathcal{L}_{p}(\mathbf{f}, g, h): \Omega_{f} \longrightarrow \mathbb{C}_{p}
$$

interpolating the square-roots of the central critical values of the classical $L\left(f_{x}, g, h, s\right)$ for $x \in \Omega_{f, \mathrm{cl}}$ with $\kappa(x) \geq 4$.

- Points with $\kappa(x)=2$ are not interpolated: $L\left(f_{x}, g, h, 2\right)=0$.
- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow \operatorname{hom}_{\text {cts }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right), \quad \Omega_{f, \mathrm{cl}}:=\kappa^{-1}\left(\mathbb{Z}_{\geq 2}\right)$.
- Harris and Tilouine construct a p-adic L-function

$$
\mathcal{L}_{p}(\mathbf{f}, g, h): \Omega_{f} \longrightarrow \mathbb{C}_{p}
$$

interpolating the square-roots of the central critical values of the classical $L\left(f_{x}, g, h, s\right)$ for $x \in \Omega_{f, \mathrm{cl}}$ with $\kappa(x) \geq 4$.

- Points with $\kappa(x)=2$ are not interpolated: $L\left(f_{x}, g, h, 2\right)=0$.
- For x_{0} with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$,
- Assume $p \nmid N$ is ordinary for f and let $\mathbf{f}: \Omega_{f} \longrightarrow \mathbb{C}_{p}[[q]]$ be the Hida family of overconvergent p-adic modular forms passing though f.
- $\kappa=$ weight $: \Omega_{f} \longrightarrow \operatorname{hom}_{\text {cts }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right), \quad \Omega_{f, \mathrm{cl}}:=\kappa^{-1}\left(\mathbb{Z}_{\geq 2}\right)$.
- Harris and Tilouine construct a p-adic L-function

$$
\mathcal{L}_{p}(\mathbf{f}, g, h): \Omega_{f} \longrightarrow \mathbb{C}_{p}
$$

interpolating the square-roots of the central critical values of the classical $L\left(f_{x}, g, h, s\right)$ for $x \in \Omega_{f, \mathrm{cl}}$ with $\kappa(x) \geq 4$.

- Points with $\kappa(x)=2$ are not interpolated: $L\left(f_{x}, g, h, 2\right)=0$.
- For x_{0} with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$, regard $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)$ as a p-adic avatar of $L^{\prime}(f, g, h, 2)$.

Theorem. (Darmon-R.) Assume for simplicity that $N_{f}=N_{g}=N_{h}$. Then

$$
\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \times \operatorname{AJ}_{p}(\Delta)\left(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}\right)
$$

where

$$
\begin{aligned}
\mathcal{E}(f, g, h):= & \left(1-\beta_{p}(f) \alpha_{p}(g) \alpha_{p}(h) p^{-2}\right)\left(1-\beta_{p}(f) \alpha_{p}(g) \beta_{p}(h) p^{-2}\right) \\
& \left(1-\beta_{p}(f) \beta_{p}(g) \alpha_{p}(h) p^{-2}\right)\left(1-\beta_{p}(f) \beta_{p}(g) \beta_{p}(h) p^{-2}\right) \\
\mathcal{E}_{0}(f):= & \left(1-\beta_{p}^{2}(f) \chi_{f}^{-1}(p) p^{-1}\right) \\
\mathcal{E}_{1}(f):= & \left(1-\beta_{p}^{2}(f) \chi_{f}^{-1}(p) p^{-2}\right) .
\end{aligned}
$$

- Let $x \in \omega_{f, \mathrm{cl}}$ with $\kappa(x)=k \geq 4$.
- Let $x \in \omega_{f, \mathrm{cl}}$ with $\kappa(x)=k \geq 4$. Define

$$
I\left(\mathbf{f}_{x}, g, h\right):=\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle, \quad t=(k-4) / 2
$$

where δ is the weight raising Shimura-Maass operator.

Spirit of proof of the p-adic Gross-Zagier formula

- Let $x \in \omega_{f, \mathrm{cl}}$ with $\kappa(x)=k \geq 4$. Define

$$
I\left(\mathbf{f}_{x}, g, h\right):=\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle, \quad t=(k-4) / 2
$$

where δ is the weight raising Shimura-Maass operator.

- Jacquet's conjecture, proved by Harris-Kudla:

$$
L\left(\mathbf{f}_{x}, g, h, \frac{k+2}{2}\right) \doteq I\left(\mathbf{f}_{x}, g, h\right)^{2}
$$

- $I^{\mathrm{alg}}\left(\mathbf{f}_{x}, g, h\right):=I\left(\mathbf{f}_{x}, g, h\right) /\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle$ is algebraic
- Let $x \in \omega_{f, \mathrm{cl}}$ with $\kappa(x)=k \geq 4$. Define

$$
I\left(\mathbf{f}_{x}, g, h\right):=\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle, \quad t=(k-4) / 2
$$

where δ is the weight raising Shimura-Maass operator.

- Jacquet's conjecture, proved by Harris-Kudla:

$$
L\left(\mathbf{f}_{x}, g, h, \frac{k+2}{2}\right) \doteq I\left(\mathbf{f}_{x}, g, h\right)^{2}
$$

- ${ }^{\operatorname{alg}}\left(\mathbf{f}_{x}, g, h\right):=I\left(\mathbf{f}_{x}, g, h\right) /\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle$ is algebraic and the intepolation property of the p-adic L-function is

$$
\mathcal{L}_{p}(\mathbf{f}, g, h)(x)=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \times I^{\mathrm{alg}}\left(\mathbf{f}_{x}, g, h\right)
$$

- Let $x \in \omega_{f, \mathrm{cl}}$ with $\kappa(x)=k \geq 4$. Define

$$
I\left(\mathbf{f}_{x}, g, h\right):=\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle, \quad t=(k-4) / 2
$$

where δ is the weight raising Shimura-Maass operator.

- Jacquet's conjecture, proved by Harris-Kudla:

$$
L\left(\mathbf{f}_{x}, g, h, \frac{k+2}{2}\right) \doteq I\left(\mathbf{f}_{x}, g, h\right)^{2}
$$

- ${ }^{\operatorname{alg}}\left(\mathbf{f}_{x}, g, h\right):=I\left(\mathbf{f}_{x}, g, h\right) /\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle$ is algebraic and the intepolation property of the p-adic L-function is

$$
\begin{gathered}
\mathcal{L}_{p}(\mathbf{f}, g, h)(x)=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \times l^{\mathrm{alg}}\left(\mathbf{f}_{x}, g, h\right) \\
=(\ldots) \times \sqrt{L\left(\mathbf{f}_{x}, g, h, \frac{k+2}{2}\right)}
\end{gathered}
$$

- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z} \geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$
- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z} \geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$
- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z} \geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$

$$
=\lim _{k \rightarrow 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}={ }^{(\text {as } t=(k-4) / 2)}
$$

- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z} \geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$

$$
\begin{aligned}
& =\lim _{k \rightarrow 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}={ }^{(\text {as } t=(k-4) / 2)} \\
& \stackrel{d=q}{=}=\frac{d}{d q} \lim _{t \rightarrow-1} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \boldsymbol{e}_{\text {ord }} \boldsymbol{d}^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}=
\end{aligned}
$$

- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z} \geq 4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$

$$
\begin{aligned}
& =\lim _{k \rightarrow 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}={ }^{(\text {as } t=(k-4) / 2)} \\
& \stackrel{d=q \frac{d}{d q}}{=} \lim _{t \rightarrow-1} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, e_{\text {ord }} d^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}= \\
& \quad=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot\left\langle\eta_{f}, e_{\text {ord }} d^{-1}\left(g^{[p]}\right) h\right\rangle=
\end{aligned}
$$

- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z}>4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$

$$
=\lim _{k \rightarrow 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}={ }^{(\text {as } t=(k-4) / 2)}
$$

$$
\stackrel{d=q}{=} \frac{d}{d q} \lim _{t \rightarrow-1} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, e_{\text {ord }} d^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}=
$$

$$
=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot\left\langle\eta_{f}, e_{\text {ord }} d^{-1}\left(g^{[p]}\right) h\right\rangle=
$$

$$
=\left\langle\eta_{f}, P(\Phi)^{-1} \epsilon^{*} \rho\right\rangle=
$$

- Recall we write $x_{0} \in \omega_{f, \mathrm{cl}}$ with $\kappa\left(x_{0}\right)=2$ and $\mathbf{f}_{x_{0}}=f$.
- $\mathcal{L}_{p}(\mathbf{f}, g, h)\left(x_{0}\right)=\lim _{\substack{x \rightarrow x_{0} \\ \kappa(x) \in \mathbb{Z}>4}} \mathcal{L}_{p}(\mathbf{f}, g, h)(x)=$

$$
\begin{aligned}
& =\lim _{k \rightarrow 2} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, \delta^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}={ }^{(\text {as } t=(k-4) / 2)} \\
& \stackrel{d=q \frac{d}{d q}}{=} \lim _{t \rightarrow-1} \frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot \frac{\left\langle\mathbf{f}_{x}^{*}, e_{\text {ord }} d^{t}(g) h\right\rangle}{\left\langle\mathbf{f}_{x}^{*}, \mathbf{f}_{x}^{*}\right\rangle}= \\
& \quad=\frac{\mathcal{E}(f, g, h)}{\mathcal{E}_{0}(f) \mathcal{E}_{1}(f)} \cdot\left\langle\eta_{f}, e_{\text {ord }} d^{-1}\left(g^{[p]}\right) h\right\rangle= \\
& =\left\langle\eta_{f}, P(\Phi)^{-1} \epsilon^{*} \rho\right\rangle=\operatorname{AJ}_{p}(\Delta)\left(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}\right)
\end{aligned}
$$

where we had set $\rho=d^{-1} P(\Phi)\left(\omega_{g} \otimes \omega_{h}\right)$.

