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Classical Heegner points

Let E/Q be an elliptic curve and

f =
∑
n≥1

anqn ∈ S2(N) with L(E , s) = L(f , s).

The modular parametrization is

ϕ : X0(N)(C) = Γ0(N)\H∗ −→ E(C)
τ 7→ Pτ := 2πi

∫ τ
∞ f (z)dz

=
∑

n≥1
an
n e2πin·τ

If τ ∈ P1(Q) is a cusp: Pτ ∈ E(Q)tors.

If τ ∈ H ∩ K , where K is imaginary quadratic: Pτ ∈ E(K ab).
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The modular parametrization revisited

The universal covering of X0(N) is

P(X0(N);∞) = {γ : [0,1] −→ X0(N), γ(0) =∞}/homotopy.

The modular parametrization factors through

ϕ : X0(N) = π1(X0(N))\P(X0(N)) −→ J0(N)→ E
γ :∞; τ 7→ Pτ :=

∫
γ ωf ,

as π1(X0(N))→ C, γ 7→
∫
γ ωf factors through H1(X0(N),Z).

Chen’s iterated integrals may give rise to anabelian
modular parametrizations of points in E(C).
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Chen’s iterated path integrals

Y smooth quasi-projective curve, o ∈ Y base point, Ỹ
universal covering.

The iterated integral attached to a tuple of smooth 1-forms
(ω1, . . . , ωn) on Y is the functional

γ 7→
∫
γ
ω1·ω2·. . .·ωn :=

∫
∆

(γ∗ω1)(t1)(γ∗ω2)(t2) · · · (γ∗ωn)(tn),

where ∆ = {0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1}.

When n = 2 :
∫
γ ω · η =

∫
γ̃ ωFη, for Fη primitive of η on Ỹ .

A linear combination of iterated integrals which is
homotopy invariant yields J : P(Y ; o) −→ C.
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Iterated integrals of modular forms

X = X0(N), Y = X \ {∞}, cusp 0 as base point.

Let ω ∈ Ω1(X ) and η ∈ Ω1
II(X ), regular at∞.

Let α = αω,η ∈ Ω1
mer(X ), with a log poles at∞, such that

ωFη − αω,η is regular on Ỹ .

Jω,η :=
∫
ω · η − αω,η is homotopy-invariant.
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Jω,η :=
∫
ω · η − αω,η is homotopy-invariant.

Victor Rotger Cycles, triple L-functions and rational points



Iterated integrals of modular forms

Let E/Q be an elliptic curve and f = fE ∈ S2(NE ).

Let g ∈ S2(M) be a newform of some level Ng , with
[Q({an(g)}) : Q] = t ≥ 1. Put N = lcm(NE ,Ng).

γf ∈ H1(X ,C) Poincaré dual of ωf .

Let {ωg,i , ηg,i}i=1,...,t be a symplectic basis of H1(X )[g].

Define Pg,f :=
∑t

i=1
∫
γf
ωg,i · ηg,i − ηg,i · ωg,i − 2αi ∈ E(C).

The point is independent of the choice of base point 0,
path γf or basis of H1(X )[g].
With M. Daub, H. Darmon and S. Lichtenstein we have an
algorithm to compute Pg,f . W. Stein has an alternative
method based on an idea of S. Zhang.
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Examples

E Pgen Ng Pg,f

37a (0,−1) 37 −6P
43a (0,−1) 43 4P
53a (0,−1) 53 −2P
57a (2,1) 57 4

3 P
57 − 16

3 P
19 −4P

58a (0,−1) 58 4P
29 0
29 4P

77a (2,3) 77 12
5 P

77 − 4
3 P

11 4
3 P

79a (0,0) 79 −4P
82a (0,0) 82 0

82 2P
41 2P
41 0

83a (0,0) 83 0
83 2P

88a (2,−2) 88 0
44 g 0

44 g(2) 8P
11 g 0

11 g(2) 8P
91a (0,0) 91 2P

91 2P
91 4P

91b (−1,3) 91 0
91 0
91 0

92b (1,1) 92 0
46 0

99a (2,0) 99 − 2
3 P

446d (1,0),(0,2) 446 0
681a (4,4) 681 −24P
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Combining our work with Yuan-Zhang-Zhang

Theorem 1 (Darmon-R.-Sols) The points Pf ,g are Q-rational.

Theorem 2. Let E/Q be an elliptic curve of conductor NE and g
a newform of level Ng . Assume gcd(Ng ,NE ) divides N exactly.

Define Pg,f := 〈Pσg(az),f (bz)〉 ⊆ E(Q) where

a | N
Ng

,b | N
NE

, σ : Kg ↪→ C

The module Pg,f is nonzero if and only if:

i. L(f ,1) = 0, L′(f ,1) 6= 0
ii. the local signs at finite primes of L(gσ⊗gσ⊗ f , s) are all +1
iii. L(Sym2(gσ)⊗ f ,2) 6= 0.
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Examples

E = 37a, g = 37b,

ε37(g,g, f ) = +1 and
L(f ⊗ Sym2(g),2) 6= 0 and Pg,f = 〈Pg,f 〉 is not torsion.

E = 58a, g = 29a, ε2(g,g, f ) = ε29(g,g, f ) = +1 and
L(f ⊗ Sym2(g),2) 6= 0. But Pg,f is torsion. Pg,f contains the
non-torsion point Pg(2),f .

E = 91b, g = 91a. Pg,f = 〈Pg,f 〉 is torsion, because
ε7(g,g, f ) = ε13(g,g, f ) = −1. Wants a Shimura curve.

E = 158b, g = 158d , ε2(g,g, f ) = ε79(g,g, f ) = +1,
Pg,f = 〈Pg,f 〉 is torsion, because L(f ⊗ Sym2(g),2) = 0.

E = 446d , g = 446b, Pg,f = 〈Pg,f 〉 is torsion, because
L(E ,1) = L′(E ,1) = 0, L′′(E ,1) 6= 0.
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Pg,f as a complex Chow-Heegner point

Gross-Kudla-Schoen’s diagonal cycle in X 3 is

∆ = {(x , x , x)} − {(x , x ,0)} − {(x ,0, x)} − {(0, x , x)}+

+{(0,0, x)}+ {(0, x ,0)}+ {(x ,0,0)} ∈ CH2(X 3)0.

Put Π = {(x , x , y , y)} ⊂ X 4.

We have π123 : X 4→X 3,
πE : X 4→X→E , and

CH2(X 3)0
AJC→ J2(X 3) =

Fil2H3
dR(X 3)∨

H3(X 3,Z)

↓ ↓
E AJC→ C/ΛE ,

Theorem. (Darmon-R.-Sols) ∆[g,g, f ] ∈ CH2(X 3)0
7→ π∗123∆[g,g, f ] 7→ π∗123∆[g,g, f ] · Π
7→ πE ,∗(π

∗
123∆[g,g, f ] · Π) = Pg,f ∈ E .
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Pg,f as a p-adic Chow-Heegner point via Coleman integration

The p-adic Abel-Jacobi map at a prime p - N is

AJp : CH2(X 3)0(Qp) −→ Fil2H3
dR(X 3/Qp)∨ and thus

logωf
(Pg,f ) = −2AJp(∆)(ηg ∧ ωg ∧ ωf ).

M. Daub is implementing the computation of these points via
this p-adic formula.
Theorem. (Darmon-R.) Let (W,Φ) be a wide open nbhd of

X0(N)(Cp) \ red−1(X (F̄p)ss)

Let ρ ∈ Ω1(W ×W) be a Coleman primitive of ωg ⊗ ωf :
dρ = P(Φ)(ωg ⊗ ωf ) for a suitable polynomial P. Then

AJp(∆)(ηg ⊗ ωg ⊗ ωf ) = 〈ηg ,P(Φ)−1ε∗ρ〉

where ε∗ = ε∗12 − ε∗1 − ε∗2, for ε12, ε1, ε2 : X ↪→ X 2.
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Connection with L-functions

The triple L-function of f ∈ Sk (Nf ), g ∈ S`(Ng), h ∈ Sm(Nh) is

L(f ,g,h; s) = L(Vf ⊗ Vg ⊗ Vh; s) =
∏

p

L(p)(f ,g,h; p−s)−1,

For p - N = lcm(Nf ,Ng ,Nh), the Euler factor L(p)(f ,g,h; T ) is

(1− αfαgαhT ) · (1− αfαgβhT ) · ... · (1− βfβgβhT ).

The completed L-function satisfies

Λ(f ,g,h; s) =
∏

p|N∞

εp(f ,g,h) · Λ(f ,g,h; k + `+ m − 2− s).

ε∞(f ,g,h) =

{
−1 if (k , `,m) are balanced.
+1 if (k , `,m) are unbalanced.
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A complex Gross-Zagier formula for ∆

Theorem (Yuan-Zhang-Zhang)

h(∆[f ,g,h]) = (Explicit non-zero factor)× L′(f ,g,h,2)

where
h : CH2(X 3)0 −→ R

is Beilinson-Bloch’s height pairing.
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A p-adic avatar of the Gross-Zagier formula

Assume p - N is ordinary for f and let f : Ωf −→ Cp[[q]] be
the Hida family of overconvergent p-adic modular forms
passing though f .

κ = weight : Ωf −→ homcts(Z×p ,C×p ), Ωf ,cl := κ−1(Z≥2).
Harris and Tilouine construct a p-adic L-function

Lp(f,g,h) : Ωf −→ Cp

interpolating the square-roots of the central critical values
of the classical L(fx ,g,h, s) for x ∈ Ωf ,cl with κ(x) ≥ 4.
Points with κ(x) = 2 are not interpolated: L(fx ,g,h,2) = 0.

For x0 with κ(x0) = 2 and fx0 = f , regard Lp(f,g,h)(x0) as a
p-adic avatar of L′(f ,g,h,2).
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A p-adic avatar of the Gross-Zagier formula

Theorem. (Darmon-R.) Assume for simplicity that
Nf = Ng = Nh. Then

Lp(f,g,h)(x0) =
E(f ,g,h)

E0(f )E1(f )
×AJp(∆)(ηf ⊗ ωg ⊗ ωh).

where

E(f ,g,h) :=
(

1− βp(f )αp(g)αp(h)p−2
)(

1− βp(f )αp(g)βp(h)p−2
)

(
1− βp(f )βp(g)αp(h)p−2

)(
1− βp(f )βp(g)βp(h)p−2

)
E0(f ) := (1− β2

p(f )χ−1
f (p)p−1)

E1(f ) := (1− β2
p(f )χ−1

f (p)p−2).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Let x ∈ ωf ,cl with κ(x) = k ≥ 4.

Define

I(fx ,g,h) := 〈f∗x , δt (g)h〉, t = (k − 4)/2

where δ is the weight raising Shimura-Maass operator.
Jacquet’s conjecture, proved by Harris-Kudla:

L(fx ,g,h,
k + 2

2
)
·

= I(fx ,g,h)2.

Ialg(fx ,g,h) := I(fx ,g,h)/〈f∗x , f∗x〉 is algebraic and the
intepolation property of the p-adic L-function is

Lp(f,g,h)(x) =
E(f ,g,h)

E0(f )E1(f )
× Ialg(fx ,g,h)

= (...)×
√

L(fx ,g,h,
k + 2

2
).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Let x ∈ ωf ,cl with κ(x) = k ≥ 4. Define

I(fx ,g,h) := 〈f∗x , δt (g)h〉, t = (k − 4)/2

where δ is the weight raising Shimura-Maass operator.

Jacquet’s conjecture, proved by Harris-Kudla:

L(fx ,g,h,
k + 2

2
)
·

= I(fx ,g,h)2.

Ialg(fx ,g,h) := I(fx ,g,h)/〈f∗x , f∗x〉 is algebraic and the
intepolation property of the p-adic L-function is

Lp(f,g,h)(x) =
E(f ,g,h)

E0(f )E1(f )
× Ialg(fx ,g,h)

= (...)×
√

L(fx ,g,h,
k + 2

2
).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Let x ∈ ωf ,cl with κ(x) = k ≥ 4. Define

I(fx ,g,h) := 〈f∗x , δt (g)h〉, t = (k − 4)/2

where δ is the weight raising Shimura-Maass operator.
Jacquet’s conjecture, proved by Harris-Kudla:

L(fx ,g,h,
k + 2

2
)
·

= I(fx ,g,h)2.

Ialg(fx ,g,h) := I(fx ,g,h)/〈f∗x , f∗x〉 is algebraic

and the
intepolation property of the p-adic L-function is

Lp(f,g,h)(x) =
E(f ,g,h)

E0(f )E1(f )
× Ialg(fx ,g,h)

= (...)×
√

L(fx ,g,h,
k + 2

2
).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Let x ∈ ωf ,cl with κ(x) = k ≥ 4. Define

I(fx ,g,h) := 〈f∗x , δt (g)h〉, t = (k − 4)/2

where δ is the weight raising Shimura-Maass operator.
Jacquet’s conjecture, proved by Harris-Kudla:

L(fx ,g,h,
k + 2

2
)
·

= I(fx ,g,h)2.

Ialg(fx ,g,h) := I(fx ,g,h)/〈f∗x , f∗x〉 is algebraic and the
intepolation property of the p-adic L-function is

Lp(f,g,h)(x) =
E(f ,g,h)

E0(f )E1(f )
× Ialg(fx ,g,h)

= (...)×
√

L(fx ,g,h,
k + 2

2
).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Let x ∈ ωf ,cl with κ(x) = k ≥ 4. Define

I(fx ,g,h) := 〈f∗x , δt (g)h〉, t = (k − 4)/2

where δ is the weight raising Shimura-Maass operator.
Jacquet’s conjecture, proved by Harris-Kudla:

L(fx ,g,h,
k + 2

2
)
·

= I(fx ,g,h)2.

Ialg(fx ,g,h) := I(fx ,g,h)/〈f∗x , f∗x〉 is algebraic and the
intepolation property of the p-adic L-function is

Lp(f,g,h)(x) =
E(f ,g,h)

E0(f )E1(f )
× Ialg(fx ,g,h)

= (...)×
√

L(fx ,g,h,
k + 2

2
).

Victor Rotger Cycles, triple L-functions and rational points



Spirit of proof of the p-adic Gross-Zagier formula

Recall we write x0 ∈ ωf ,cl with κ(x0) = 2 and fx0 = f .

Lp(f,g,h)(x0) = lim x→x0
κ(x)∈Z≥4

Lp(f,g,h)(x) =

= lim
k→2

E(f ,g,h)

E0(f )E1(f )
· 〈f
∗
x , δ

t (g)h〉
〈f∗x , f∗x〉

=(as t=(k−4)/2)

d=q d
dq

= lim
t→−1

E(f ,g,h)

E0(f )E1(f )
· 〈f
∗
x ,eordd t (g)h〉
〈f∗x , f∗x〉

=

=
E(f ,g,h)

E0(f )E1(f )
· 〈ηf ,eordd−1(g[p])h〉 =

= 〈ηf ,P(Φ)−1ε∗ρ〉 = AJp(∆)(ηf ⊗ ωg ⊗ ωh)

where we had set ρ = d−1P(Φ)(ωg ⊗ ωh).
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