Stable solutions to semilinear elliptic equations are smooth up to dimension 9

Xavier Cabré

ICREA and UPC, Barcelona

Stable solutions to semilinear elliptic equations are smooth up to dimension 9

Xavier Cabré

Joint work with Alessio Figalli, Xavier Ros-Oton, and Joaquim Serra. Acta Math. 2020

· <u>Semilinear elliptic PDEs</u>: - <u>Au</u>=flu) in szcik, bold domain Energy: $E_{SU}(u) = \int \frac{1}{2}|\nabla u|^2 - F(u)$, F'=f $\int 1^{st} variation$ 2^{nd} variation is $-\Delta - f(u) = linearized$ operator at u for the equation $-\Delta u = f(u)$ it is nonnegative iff $-\Delta - f(u) \ge 0$ iff $\int f(u) \xi^2 \leq \int |\nabla \xi|^2 \quad \forall \xi \in C_c(\Omega) \leftarrow \frac{\text{Def. of}}{\text{Stability}}$

· <u>Semilinear elliptic PDEs</u>: - <u>Au=flu)</u> in szcIRⁿ, bold domain

- -> Competitors u+EE have all same boundary valves as u
- → Our interest: nonlinearities f superlinear at +00 & f≥0

NO absolute minimizer exists
$$E_{S}(tS) = t^{2} \int_{S}^{1} |VS|^{2} - \int_{S}^{1} F(tS) \rightarrow -\infty \left(F(tS) \gg t^{2}S^{2}\right)$$

• The Barenblatt-Gelfand problem 1963:

$$\begin{cases} -\Delta u = \lambda f(u) & \text{in } \Omega \subset \mathbb{R}^n \\ u > 0 & \text{in } \Omega \end{cases}$$
 with $f(0) > 0$, nondecreasing, convex, $u = 0$ on $\partial \Omega$, $\partial \Omega$, $\partial \Omega$ superlinear $\partial \Omega$ $\partial \Omega$.

Model noulinearities:
$$f(u) = e^u$$
 (combostion theory)
 $f(u) = (1+u)^p$, $p>1$

• The Barenblatt-Gelfand problem 1963:

$$-\Delta u = \lambda f(u)$$
 in ΩcR^n
 $u>0$ in Ω with $f(0)>0$, nondecreasing, convex,
 $u=0$ on $\partial\Omega$, & superlinear $\alpha t + \alpha 0$.

Then, $\exists \lambda^* \in (0,+\infty)$ & $0 < \lambda < \lambda^* \Rightarrow \exists u_{\lambda} > 0$ stable classical (L^{∞})

us 1 u* as 212*

L> u*e1'(2) is a distributional stable

solution for 1=1*

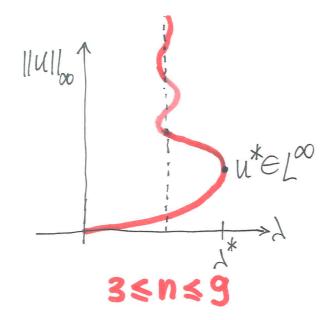
u*=the extremal solution of the pb.

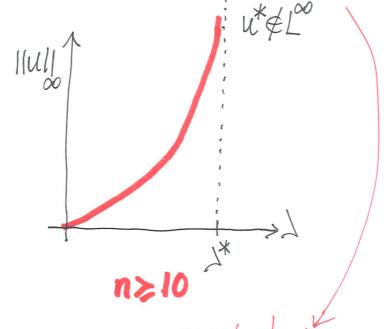
= \$ solutions for 1>>*

Model noulinearities:
$$f(u) = e^u$$
 (combostion theory)
 $f(u) = (1+u)^p$, $p>1$

· Joseph-Lundgren 72] fau)=e & SZ=B, (RADIAL case): u*¢L∞ 11111 1141/001 u*eL[∞] 3≤n≤9

· Joseph-Lundgren '72] fau)=eu & SZ=B, (RADIAL case):

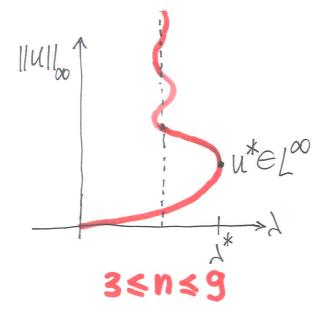




Explicit singular solution:

 $u(x) = -2\log |x| \in W_0^{1,2}(B_1)$ Solves $-\Delta u = 2(n-2) e^u$ in B_1 , $n \ge 3$ Linearized operator $= -\Delta - 2(n-2)\frac{1}{|x|^2}$ (Hardy's ineq) $\rightarrow u$ stable $\Leftrightarrow 2(n-2) < \frac{(n-2)^2}{4} \Leftrightarrow n \ge 10$

· Joseph-Lundgren '72] fau)=eu & SZ=B, (RADIAL case):



Explicit singular solution:

 $u(x) = -2\log |x| \in W_0^{1/2}(B_1)$ Solves $-\Delta u = 2(n-2)e^u$ in B_1 , $n \ge 3$ explicitly $-\Delta u = 2(n-2)e^u$ in B_1 , $n \ge 3$ explication $-\Delta - 2(n-2)\frac{1}{|x|^2}$ u(x) (Hardy's ineq) $\rightarrow u$ stable $\Leftrightarrow 2(n-2) \leqslant \frac{(n-2)^2}{n} \Leftrightarrow n \ge 10$

ODE techniques
Similar for flu)=(1+u)

explicit solutions

u(x)=1x1-xp-1

(xp>0)

- Questions: When is $u^* \in L^{\infty}(\mathfrak{I})$?

 When are $W_0^{1/2}$ stable solutions bounded?
 - For general solutions, L^{∞} estimates exist for f subcritical or critical: $|f(u)| \leq C(1+|u|)^{p}$, $p \leq \frac{n+2}{n-2}$

- Questions: When is $u^* \in L^{\infty}(\mathfrak{I})$?

 When are $W_0^{1/2}$ stable solutions bounded?
 - For general solutions, L^{∞} estimates exist for f subcritical or critical: $|f(u)| \leq C(1+|u|)^{p}$, $p \leq \frac{n+2}{n-2}$
- PDE analogue of 'regularity of Stable minimal surfaces in TRn":
 - -> Not true for n>8
 - True for n=3 ([Fischer-Colbrie & Schoen 80]

 [Do Carmo & Peng '79])
 - -> Open pb for 4 < n < 7!
 - (> Known for n < 7 for minimizing minimal surfaces)

- Questions: When is $u^* \in L^{\infty}(S_1)$?

 When are $W_0^{1/2}$ stable solutions bounded?
 - For general solutions, L^{∞} estimates exist for f subcritical or critical: $|f(u)| \leq C(1+|u|)^{p}$, $p \leq \frac{n+2}{n-2}$

Istresult $\forall \Omega : \text{[Crandall-Rabinowitz'75]}$ $u^* \in L^{\infty}(\Omega)$ if $n \leq 9$ and $f(u) \sim e^u$ or $f(u) \sim (1+u)^p$

- [Brezis-Vázquez 97] Is it always u* \(\mathbb{W}_0^{1/2}(\Omega) ?
- [Brezis '03] Is there something "sacred" about dim 10?

 Is it possible to construct a singular stable solin

 for $n \le 9$, in some domain & for some f?

- [Brezis-Vázquez 97] Is it always u* \(\mathbb{W}_0^{1/2}(\Omega) ?
- [Brezis '03] Is there something "sacred" about dim 10?

 Is it possible to construct a singular stable solin

 for $n \le 9$, in some domain & for some f?
- [Neder '00] $u^* \in L^{\infty}(\Omega)$ if $n \leq 3$; $u^* \in W_0^{1/2}(\Omega)$ if $n \leq 5$ or $\forall n$ if Ω convex

- [Brezis-Vázquez 97] Is it always u* \(\mathbb{W}_0^{1/2}(\Omega) ?
- [Brezis '03] Is there something "sacred" about dim 10?

 Is it possible to construct a singular stable solin

 for $n \le 9$, in some domain & for some f?
- [Neder '00] $u^* \in L^{\infty}(\Omega)$ if $n \leq 3$; $u^* \in W_0^{1/2}(\Omega)$ if $n \leq 5$ or $\forall n$ if Ω convex
- [Cabré-Capella '05] u*eL°(B,) if n≤9 (radial case)

- [Brezis-Vázquez 97] Is it always u* \(\mathbb{W}_0^{1/2}(\Omega) ?
- [Brezis '03] Is there something "sacred" about dim 10?

 Is it possible to construct a singular stable solin

 for $n \le 9$, in some domain & for some f?
- [Neder '00] $u^* \in L^{\infty}(\Omega)$ if $n \leq 3$; $u^* \in W_o^{1/2}(\Omega)$ if $n \leq 5$ or $\forall n$ if Ω convex
- [Cabré-Capella '05] u*e L°(B,) if n≤9 (radial case)
- [Cabré 10] $u^* \in L^{\infty}(\Omega)$ if $n \leq 4$ & Ω convex & Interior L^{∞} bound if $n \leq 4$ $\forall f$

- [Brezis-Vázquez 97] Is it always u* \(\mathbb{W}_0^{1/2}(\omega) ?
- [Brezis '03] Is there something "sacred" about dim 10?

 Is it possible to construct a singular stable solin

 for $n \le 9$, in some domain & for some f?
- [Neder '00] $u^* \in L^{\infty}(\Omega)$ if $n \leq 3$; $u^* \in W_o^{1/2}(\Omega)$ if $n \leq 5$ or $\forall n \in \Omega$
- [Cabré-Capella '05] u*eL°(B,) if n<9 (radial case)
- [Cabré 10] $u^* \in L^{\infty}(\Omega)$ if $n \leq 4$ & Ω convex & Interior L^{∞} bound if $n \leq 4$ $\forall f$
- [Villegas 43] $u^* \in L^{\infty}(\Omega)$ if $n \le 4$; $u^* \in W_0^{1/2}(\Omega)$ if $n \le 6$
- [Cabré & Ros-Oton '13] L^{∞} if $n \le 7$ & SZ of double revolution ■ [Cabré - Sanchén - Spruck '16] L^{∞} if $n \le 5$ & $f/_{11+\epsilon} \le C(\epsilon)$ $\forall \epsilon > 0$

■ [Cabré, Figalli, Ros-Oton, Serra 19]

Thm 1 uec²(B₁) stable sol'n of $-\Delta u = f(u)$ in B_1 & $f > 0 \Rightarrow$ $||\nabla u||_{L^{2+\delta}(B_{1/2})} \leq C(n) ||u||_{L^{1}(B_1)} \qquad (8=8(u)>0)$ $\text{if } n \leq 9 \text{ then } ||u||_{C^{\alpha}(\overline{B}_{1/2})} \leq C(n) ||u||_{L^{1}(B_1)} \qquad (\alpha = \alpha(n)>0).$

■ [Cabré, Figalli, Ros-Otou, Serra '19]

Thin 1 uec²(B₁) stable sol'n of $-\Delta u = f(u)$ in B₁ & $f \ge 0 \Rightarrow$ $||\nabla u||_{L^{2+\delta}(B_{1/2})} \le C(n) ||u||_{L^{1}(B_{1})} \qquad (8 = 8(n) > 0)$ $\text{if } n \le 9 \text{ then } ||u||_{C^{\alpha}(\overline{B}_{1/2})} \le C(n) ||u||_{L^{1}(B_{1})} \qquad (\alpha = \alpha(n) > 0).$

Corol 1 L^{oo}(2) estimate for $n \le 9$ (if $f \ge 0$) and any stable sol'n of $1-\Delta u = f(u)$ in $\Im CIR^n$ if $\Im is bodol convex <math>C^1$ domain.

■ [Cabré, Figalli, Ros-Otou, Serra '19]

```
Thm 1 uec2(B1) stable sol'n of -\Delta u = f(u) in B, & f \ge 0 \implies
                                                                                   ||\nabla u||_{L^{2+\delta}(B_{1/2})} \leq C(n) ||u||_{L^{1}(B_{1})} \qquad (8=8(n)>0)
                                                                if n \le g then \|u\|_{C^{\alpha}(\overline{B}_{M_2})} \le C(n) \|u\|_{L^{1}(B_n)} (\alpha = \alpha(n) > 0).
    Corol 1 L^{\infty}(\Omega) estimate for n \leq 9 (if f \geq 0) and any stable soln of 1-\Delta u=f(u) in \Omega \subset \mathbb{R}^n if \Omega is bodd convex C^1 domain.
Thm 2 sign bodd c^3 domain, f > 0, f > 0, f > 0.
                 u \in C^2(\Omega) \cap C^0(\overline{\Omega}) stable sol'n of \begin{cases} -\Delta u = f(u) \text{ in } \Omega \\ u = 0 \text{ on } 2\Omega \end{cases}
                                                   || \(\nabla u || \(\lambda \) \(\lambda \)
                                                                                                                                                                                                                                                                                                          (8=8cn)>0)
                                          if n \leq 9 then \|u\|_{C^{\infty}(\overline{\Omega})} \leq c(\Omega) \|u\|_{L^{1}(\Omega)} (\alpha = \alpha(n) > 0).
```

Corol 2 Ω bdd C^3 domain \Rightarrow $\mathcal{U}^* \in \mathcal{W}^{1/2+8}_0(\Omega)$ (X=8(n)>0) if $n \leq 9$, $\mathcal{U}^* \in \mathcal{L}^{\infty}(\Omega)$.

Thm 3 Sharp Morrey $M^{P,G}(\Omega)$ estimates for stable solins when $n \ge 10$.

RELATED WORK:

- $-\Delta_p u = flu), 1$
 - ICabré-Miraglio-Sanchón 20] Optimal result for P>2:
 regularity if n .
 - · Optimal result is open for 1< P<2.
- Fractional Laplacian (-L) u = flu), 0<5<1
 - · Optimal dimensions: open even in the radial case

involved relation on T-function: only known for $f(u) = e^u$ in convex symmetric domains [Ros-Oton 14]

• PROOFS

$$\Delta u + f(u) = 0 \qquad (EQUATION)$$

$$\Delta + f(u) \qquad (LINEARIZED)$$

$$OPERATOR < 0$$

$$\int f(u) z^2 < \int |\nabla z|^2 \qquad \forall z \in C_c^1(\Omega) \qquad (STABILITY)$$

$$\sum_{\Omega} z = c \cdot P \qquad \text{with } z = 0.$$

$$\int_{\Omega} c (\Delta c + f(u)c) z^2 < \int_{\Omega} c^2 |\nabla z|^2.$$

PROOFS

 $\int f(u) \xi^{2} \le \int |\nabla \xi|^{2} \quad \forall \xi \in C_{c}^{1}(\Omega) \quad \text{minimal ones}$ $\int_{\Omega} c \left(\Delta c + f(u)c \right) \xi^{2} \le \int_{\Omega} c^{2} |\nabla \xi|^{2} \quad \text{form} \quad ||$ $\int_{\Omega} c \left(\Delta c + f(u)c \right) \xi^{2} \le \int_{\Omega} c^{2} |\nabla \xi|^{2} \quad \text{form} \quad ||$

[Cabré-Capella 05]

• Proofs
$$\xi = c.7$$
 $\Rightarrow \int_{\Omega} c(\Delta c + f(u)c) \eta^2 \leq \int_{\Omega} c^2 |\nabla \eta|^2$. $(2\pi)^2 = 0$

■ [Crandall-Rabinowitz] & [Nedev] :
$$\Xi = h(u)$$

[Cabré-Capella]:
$$z=ru_r\cdot r^{-a}y$$
, $y cut-off near ∂B_n
 $(\Omega=B_n)$
 $z=ru_r\cdot r^{-a}y$, $y cut-off near ∂B_n
 $z=ru_r\cdot r^{-a}y$, $y cut-off near ∂B_n
 $z=ru_r\cdot r^{-a}y$, $y cut-off near ∂B_n
 $z=ru_r\cdot r^{-a}y$, $z$$$$$

$$\xi = |\nabla u| \cdot g(u)$$

• Proofs
$$\xi = c.7$$
 $\Rightarrow \int c(\Delta c + f(u)c) \eta^2 \leq \int c^2 |\nabla \eta|^2$. $(\eta_{\infty} = 0)$

■ [Crandall-Rabinowitz] & [Nedev] :
$$\Xi = h(u)$$

[Cabré-Capella]:
$$\Xi = rur \cdot r^{-a} \mathcal{Y}$$
, \mathcal{Y} cut-off near ∂B_{λ} ($\Omega = B_{\lambda}$)

$$\mathcal{E} = |\nabla u| \cdot g(u)$$

$$C \qquad \mathcal{V}$$

For our interior result (n < 9) we will use both
$$c = x \cdot \nabla u$$
 & $c = |\nabla u|$

$$\Rightarrow \int c(\Delta c + f(u)c) \eta^2 \leq \int c^2 |\nabla \eta|^2. \quad (2|_{\partial \Sigma} = 0)$$

■ [Crandall-Rabinowitz] & [Nedev] :
$$\Xi = h(u)$$

$$\xi = h(u)$$

[Cabré-Capella]:
$$z=ru_r\cdot r^{-a}y$$
, $y cut-off near ∂B_n
 $(\Omega=B_n)$$

$$\mathcal{E} = |\nabla u| \cdot g(u)$$

For our interior result (n < 9) we will use both
$$c = x \cdot \nabla u$$

$$(\Delta + f(u))(x \cdot \nabla u) = 2\Delta u$$

$$(\Delta + f(u)) |\nabla u| = \frac{1}{|\nabla u|} \left\{ \sum_{i \neq j} u_{i \neq j}^2 - \sum_{i} \left(\sum_{j} u_{i \neq j} \frac{u_{j \neq j}}{|\nabla u|} \right)^2 \right\}$$

• Proofs
$$\xi = c.7$$
 $\Rightarrow \int c(\Delta c + f(u)c) \eta^2 \leq \int c^2 |\nabla \eta|^2$. $(\eta_{|\partial \Sigma} = 0)$

■ [Crandall-Rabinowitz] & [Nedev]:
$$\Xi = h(u)$$

[Cabré-Capella]:
$$z=ru_r r^{-a}y$$
, $y cut-off near ∂B_A
 $(\Omega=B_A)$$

$$\xi = |\nabla u| \cdot g(u)$$

For our interior result (n < 9) we will use both
$$c = x \cdot \nabla u$$
 & $c = |\nabla u|$

$$(\Delta + f(u))(x \cdot \nabla u) = 2\Delta u$$

$$(\Delta + f(u)) |\nabla u| = \frac{1}{|\nabla u|} \left\{ \sum_{i \neq j} u_{i \neq j}^2 - \sum_{i} \left(\sum_{j} u_{i \neq j} \frac{u_{i \neq j}}{|\nabla u|} \right)^2 \right\}$$

Curvature of level sets Hichael Simon Sbolev ineg. Using $\mathcal{E}=c\mathcal{V}=(X\cdot\nabla u)\mathcal{V}(X)$ $\sim \mathcal{V}(X\cdot\nabla u)\mathcal{V}(X)$ $\sim \mathcal{V}(X\cdot\nabla u)\mathcal{V}(X)\mathcal{V}(X)$ $\sim \mathcal{V}(X\cdot\nabla u)\mathcal{V}(X)\mathcal{V}($

 $\int_{\mathcal{B}_{1}} \{(n-2)? + 2 \times \cdot \nabla ?\} ? |\nabla u|^{2} - 2 (\times \cdot \nabla u) \nabla u \cdot \nabla (?^{2})$ $= |\times \cdot \nabla u|^{2} |\nabla ?|^{2} \leq 0.$

Using $\xi = c ? = (x \cdot \nabla u) ? (x) \sim \int_{\Omega} (x \cdot \nabla u) 2 \Delta u ? \xrightarrow{\text{Poliozae} v}$ Lemma 1 Yn Yf Yu stable solln Yre C'(B,) => $\int_{\mathcal{B}_{1}} \left\{ (N-2) ? + 2 \times \cdot \nabla ? \right\} ? \left| \nabla u \right|^{2} - 2 \left(\times \cdot \nabla u \right) \nabla u \cdot \nabla (?^{2}) \mathbf{0}$ $= \frac{1}{2} \left| \left| \nabla ? \right|^{2} \right| \leq 0.$ $\xi = (x.\nabla u) |x|^{\frac{2-n}{2}} f(x) \qquad \text{so that} \\
\frac{11}{7(x)} f(x) \qquad \text{so that}$

Using
$$E=c?=(x.\nabla u)?(x)$$
 $\sim \Rightarrow \int_{\mathcal{Q}} (x.\nabla u) 2\Delta u \, h^2$ Foliozaev trick

Lemma 1 $\forall n \forall f \forall u \text{ stable sol} n \forall f \in C_c^1(B_f) \Rightarrow$

$$\int_{\mathcal{B}_f} \{(n-2)? + 2x.\nabla r\} \, h |\nabla u|^2 - 2(x.\nabla u) \nabla u.\nabla (h^2) = 0$$

$$\int_{\mathcal{Q}} |x.\nabla u|^2 |\nabla h|^2 \leq 0.$$

$$E=(x.\nabla u) |x|^2 |\nabla h|^2 \leq 0.$$

$$E=(x.\nabla u) |x|^2 |\nabla h|^2 \leq 0.$$

$$\int_{\mathcal{Q}} |x.\nabla u|^2 |\nabla h|^2 = \frac{1}{4} \{8(n-2) - (n-2)^2\}$$

$$= \frac{1}{4} (n-2)(10-n) \int_{\mathcal{B}_g} |x|^{2-n} u_r^2 \leq C \int_{\mathcal{B}_{2p} \setminus \mathcal{B}_g} |x|^{2-n} |\nabla u|^2$$

NOTE: $\int |x-y|^{2-n} |\nabla u(x) \cdot \frac{x-y}{|x-y|} |^2 dx \ll C$ $\forall y \in B_{1/2}$ $\exists B_{1/2}$ WE HAVE: $\int |x|^{2-n} u_r^2 \ll C \int |x|^{2-n} |\nabla u|^2$ $\exists B_e \qquad \exists_{z_e} |B_e > B_e \qquad \exists_{z_e} |B_e > B_e > B_e$

NOTE: $\int |x-y|^{2-n} |\nabla u(x) \cdot \frac{x-y}{|x-y|}|^2 dx \ll C$ $\forall y \in B_{1/2}$ $\Rightarrow u \in BMO \text{ if } n \leqslant 9$ WE HAVE: $\int |x|^{2-n} u_r^2 \leqslant \left(\int |x|^{2-n} |\nabla u|^2\right)$ $= \int_{\mathbb{R}^n} |B_e|^{2-n} |\nabla u|^2$ If we had $\int_{B_2 \setminus B_0} |x|^{2-n} |\nabla u|^2 \leq C' \int_{B_2 \setminus B_0} |x|^{2-n} |u_r|^2$, then $\int |x|^{z-n} u_r^2 \leq C'' \int |x|^{z-n} u_r^2$ $\exists_{\varrho} \mid B_{\varrho}$ -adimensional quantity We would like $\int |\nabla u|^2 \leqslant C(n) \int u_r^2$. (*) $\int |\nabla u|^2 \leqslant C(n) \int u_r^2$. (*)

May it be true?

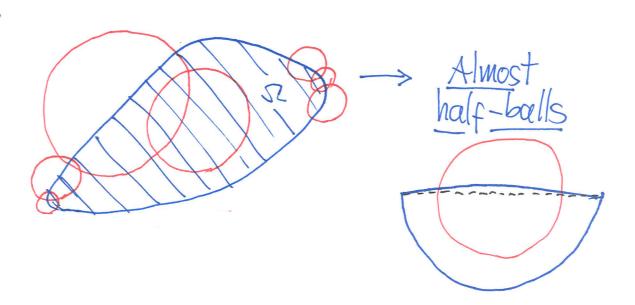
We would like $\int |\nabla u|^2 \leqslant C(n) \int u_r^2 . \quad (*)$ $B_{N_2} \setminus B_{N_4}$ $B_{N_2} \setminus B_{N_4}$ May it be true ? If false, in the extreme case we would have $\int |\nabla u|^2 = 1 \quad \& \quad \int |u_r|^2 = 0$ $B_{V_2} \setminus B_{N/4} \quad \Rightarrow \quad \text{u is } 0-\text{homogeneous}$ $CONTRADICTION \quad \downarrow \quad -\Delta u = \text{flu}$

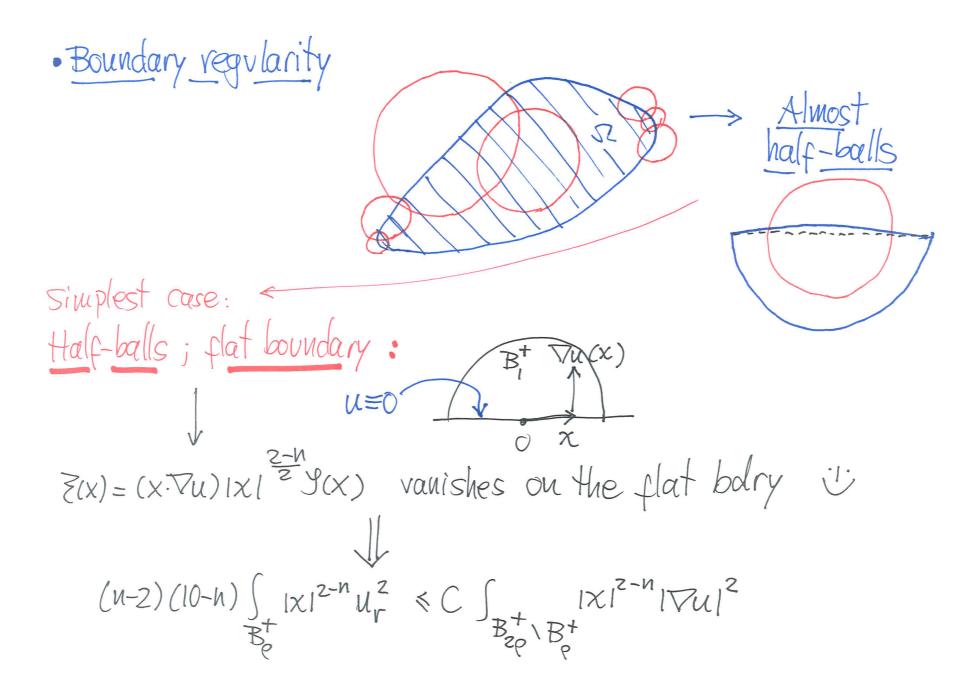
We would like $\int |\nabla u|^2 \leqslant C(n) \int |u_r|^2 . \quad (*)$ $B_{N_2} \setminus B_{N_4}$ $B_{N_2} \setminus B_{N_4}$ May it be true ? If false, in the extreme case we would have $\int |\nabla u|^2 = 1 & \int |u_r|^2 = 0$ $B_{1/2} \setminus B_{1/4} \longrightarrow u \text{ is } O-homogeneous$ $CONTRADICTION II - \Delta u = flu$ $11 - \Delta u = f(u) \ge 0$

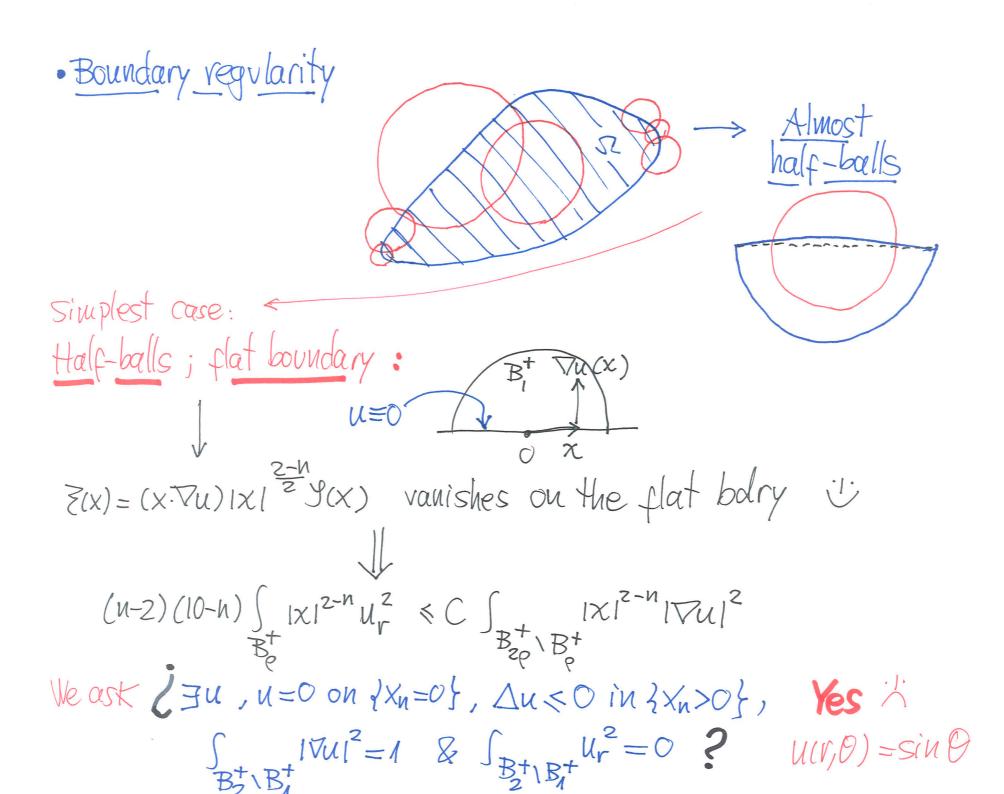
 $u=ctt \leftarrow u$ is a superharmonic fich on the sphere 5^{n-1}

-> We prove (*) (under a doubling assumption that suffices) by COMPACTNESS using the higher integrability estimate $C = |\nabla u| \implies ||\nabla u||_{12+8} \leqslant C(u) ||\nabla u||_{12}$

· Boundary regularity







key remark: u cannot solve - Du=fin) if u=u(0)

O homogeneous

- 2 homogeneous

Question: Can one pass to the limit the condition - Du = flu)?

key remark: u cannot solve - Du=fin) if u=u(0) Question: Can one pass to the limit the condition - Du = flu)? Thm 4 Let ux be stable solins of $-\Delta u_k = f_k(u_k)$ in $VCIR^hopen$, with $f_{\kappa} \ge 0$, $f_{\kappa}'' \ge 0$; $u_{\kappa} \in W_{loc}^{1/2}(U)$.

Then $u \in W_{loc}^{1/2}(U)$ is a stable solution of $-\Delta u = f(u)$ in Ufor some & nondecreasing and convex, f: (-00, M) -> IR.

Thanks for your attention